AD-A230 663

CLASSIFICATION OF CORRELATION
SIGNATURES OF SPREAD SPECTRUM
SIGNALS USING NEURAL NETWORKS

THESIS
Richard A. Chapman

AFIT/GE/ENG/90D-11

DTIC_

ELECTE
S JANOT 1991
E

S —

Wright-Pattercon Air Force Base, Ohio
F (DIS’I'RIBUTION STATEMENT &]

Approved for public reléass | 91 1 3]_ 4 2

Distribution Unli

AFIT/GE/ENG/90D-11

E
3
E
3
I
E:

CLASSIFICATION OF CORRELATION
SIGNATURES OF SPREAD SPECTRUM
SIGNALS USING NEURAL NETWORKS

ARG AT S

THESIS
Richard A. Chapman
ATIT/GE/ENG/S0D-11 3
3
COEREL AL ?
3 3 a 2 “:f* - ;
s e LT by :
y,"’"*’“?*' gi‘ ’AL Prsk! I{P : E
(RN Y \} 7 \':)g”"' : 4
\: i JA‘ -~ ‘§ E
& gy X
,'21 fﬂ‘* . i T K
E:J‘-"l ; %& T {
e }afj :
Approved for public release; distribution unlimited
3

AFIT/GE/ENG/90D-11

CLASSIFICATION OF CORRELATION
SIGNATURES OF SPREAD SPECTRUM
SIGNALS USING NEURAL NETWORKS

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science in Electrical Engineering

Richard A. Chapman, B.E.E.

December 1990

Accession For

NTIS GRA&IL

DTIC TAB /
Unannounced |
Justification_

By. -
Distribution/

Availability Codes

Avall and/or
Dist Special

Al

Approved for public release; distribution unlimited

PCCTALLYY

Preface

This research effort was driven by the need for a real-time method to determine
features of an adversary’s spread spectrum signals. The experiments of this thesis
were designed to investigate the possibility of using neural networks in conjunction

with a correlator to fill this need.

I would like to thank several peoj. : for their contributions to the development
of this document. First, I thank my acvisor, Dr. David M. Norman, for providing
guidance and sharing knowledge througlout this r-search effort. Also, I am grateful
to Daniel R. Zahirniak for his . ‘stance in zettin up and using his neural network
software. I would also like to tkank my committee members, Dr. Steven K. Rogers
and Dr. Mark E. Oxley, for their advice for improving this thesis and Dr. Charles
Garvin of Harry Diamond Labs for taking the time to generate the correlation sig-
natures which made this research possible. Finally, I am deeply indebted to my wife,
Brenda, and my children, Kimberly, Rockne, and Mitchell, for their encouragement,

understanding, and support during the months in which this thesis was developed.

Richard A. Chapman

Table of Contents

Page

Preface e il
Tableof Contents i
Listof Figures i i e e viii
Listof Tables ix
Abstract e e, xi
I Introduction L o 1-1
1.1 Background 1-1

12 Problem 1-1

1.3 Summary of Current Knowledge 1-2

14 Assumptions., 1-2

1.5 Objectives i e 1-3

16 Scope .. .o it e e 1-4

1.7 Methodology 1-4

1.8 Thesis Organization 1-5

II. Background Material 2-1
21 Introduction. 2-1

2.2 Spread Spectrum Signals 2-1

221 Theory. 2-1

2.2.2 ANN Connection. 2-2

2.3 Artificial Neural Networks 2-2

e e a8 Al AN TN T P

PN T AR s w B RN

2.4 Multi-layer Perceptron Topology
2.5 Multi-layer Perceptron Training
2.5.1 Mean-Squared Error (MSE) Objective Function.
2.5.2 Cross Entropy (CE) Objective Function. . . .
2.5.3 Classification Figure of Merit (CIFM) Objective
Function.
2.5.4 Application of Objective Functions to ANN., .
2.5.5 Definition of Terms of Update Rules.
2.5.6 MSE, CE, and CI'M Update Rules.
2.6 Multi-layer Perceptron Usage
2.7 Previous Research Using Perceptrons
2.7.1 Noise Reduction Using Perceptron.
2.7.2 Sonar Target Classification Using Perceptron.
2.7.3 Radar Data Classification Using Perceptron. .
2.7.4 Phoneme Recognition Using the MSE, CE, and
CFM Functions.
2.8 Radial Basis Function (RBF) Networks
2.8.1 Nodes at Data Points Algorithm.
2.8.2 Kohonen Algorithm.
2.8.3 IK-Means Algorithin.
2.8.4 Center at Class/Cluster Averages Algorithm. .
2.8.5 Set Sigmas to a Constant Rule.
2.8.6 Set Sigmas at P-Neighbor Averages Rule. . . .
2.8.7 Scale Sigmas by Constant Rule.
2.8.8 Back-Propagation Training.
2.8.9 Matrix Inversion.

2.8.10 Radial Basis Function Usage.
2.9 Previous Research Using RBF's

iv

2-10
2-14
2-14
2-14
2-15
2-15

2-16
2-17
2-19
2-19
2-20
2-21
2-23
2-23
2-23
2-24
2-25
2-26
2-26

2.9.1 Digit Classification Using RBFs.. 2-26

2.9.2 Vowel Recognition Using RBFs. 2-21

2.9.3 Phoneme Labeling using RBFs. 2-217
210 Conclusion e e 2-28]
ML Methodology « « . oo oo e e oo 31 i
3.1 Introduction............... 3-1 g,
32 Resources 3-1
3.2.1 Spread Spectrum Correlation Signatures. . . . 3-1
3.2.2 ANN Simulator Software. 3-2
3.2.3 Data Set Construction. 3-2 :
3.3 Notation and Definitions 3-3
3.4 Presentation of Network Results 3-8
3.4.1 Training Performance. 3-8 j
3.4.2 Test Performance.. 3-9]

3.5 Experiment Design 3-9

351 Runl. 3-9

352 Run2. 3-11

353 Rund. 3-12

354 Rund. 3-14

3.5.5 Direct Sequence Chip Rate Experiments. . . . 3-18

3.5.6 Irequency Hopped Hopping Rate Experiments. 3-19
36 Conclusion. 3-21 3
IV. Results e 4-1 !
41 Introduction 4-1 d

4.2 Run 1 - Two Classes Controlled Data Sets 4-1

4.2.1 Training Performance. 4-1

v

4.2.2 Classification Accuracy on Test Vectors.

423 RunlSummary.
4.3 Run 2 - 60/40% Training Class Mix
4.3.1 Training Performance.

4.3.2 Classification Accuracy on Test Vectors.

433 Run2Summary.
4.4 Run 3 - Two Classes Randomly Selected Data Sets . .

4.4.1 Training Performance.

4.4.2 Classification Accuracy on Test Vectors.

4.4.3 Nodes at Data Points Truining Failure Alterna-

444 Run3Summary.
4.5 Run 4 - Four Classes Randomly Selected Data Sets . .

4.5.1 Classification Accuracy on Test Vectors for Run

4o e e

452 Rund Summary.

46 ChipRateResults.
4.6.1 Introduction.

4.6.2 Chip Rate Classification Results.

4.6.3 Chip Rate Experiments Summary..

4.7 Hopping Rate Experiment Results.
477.1 Introduction.

4.7.2 Hopping Rate Classification Results.

4.7.3 Hopping Rate Experiments Summary.

48 Conclusion. v v i i e .

vi

Page
4-2
4-2
4-3
4-3
4-3
4-4
4-6
4-6
4-9

4-9
4-11
4-13

4-15
4-15
4-16
4-16
4-16
4-18
4-19
4-19
4-19
4-21
4-22

e L e

V. Conclusions and Recommendations 5-1
51 Conclusions 5-1

5.1.1 Two Class Network Performance. 5-1

5.1.2 Controlling Probability Matrix Symmetry. . . 5-1

5.1.3 ~Data Set Selection Method Effects. 5-1

5.1.4 Majority Vote Results. 5-2

5.1.5 Four Class Network Performance. 5-2

5.1.6 Classification Accuracy.. 5-2

5.1.7 Training Times. 5-2

5.1.8 Chip and Hopping Rate Networks Performance. 5-3

5.2 Recommendations. 5-3
Appendix A. DataTables A-1
Appendix B. Data File Samples and Processing Software B-1
B.1 Preprocessing of Correlation Product Data Files. . . . B-1
B.2 Construction of Datasets. B-4
B.3 ANN Simulator Menu and Output Files. B-7
B.4 Processing of ANN Output. B-15
Bibliography e BIB-1
Vita . o o e e e VITA-1

vii

Figure

2.1.
2.2.
2.3.
2.4.
2.5.

3.1.
3.2.

4.1.
4.2,
4.3.
4.4,
4.5.
4.6.

B.1.
B.2.

List of Figures

Page
Three-layer Perceptron. 2-4
Single PerceptronNode 2-5
Back-Propagation Network 2-8
One Dimensional Radial Basis Function 2-17
RBF Neural Network 2-18
Diagram of a Majority Vote Network 3-5
Run 4 Center at Class Averages-Seed 1. 3-15
Run R3MSE Training Performance 4-7
Run R3aMSE Training Performance 4-8
Run R3aCE Training Performance 4-8
Run R3aCFM Training Performance 4-9
Run 3 Center at Class Averages-Seed 6. 4-11
Run 4 CE Training Performance 4-14
Direct Sequence Correlation Product CORR18 Before Processing B-3
Direct Sequence Correlation Product CORR18 After Processing B-3

viii

i

L i s

List of Tables

Table Page
3.1. Experiment Run Parameters 3-17
3.2. Chip Rate Training Data Sets 3-18
3.3. Chip Rate Networks Training Parameters 3-19
3.4. Hopping Rate Training Data Sets 3-20
3.5. Hopping Rate Networks Training Parameters 3-21
4.1. Training Statistics for Run 1 Networks 4-1
4.2. Output Summary Statistics for Distributions of Run1 4-2
4.3, Training Statistics for Run 2 Networks 4-4
4.4. Output Summary Statistics for Distributions ef Run 2 4-4
4.5. Average Probability Matricesof Runsland 2. 4-5
4.6. Training Statistics for Run 3 Networks 4-6
4.7. Output Summary Statistics for Distributionsof Run 3 4-10
4.8. Training Statistics for Run 4 Networks 4-14
4.9. Output Summary Statistics for Distributions of Run4 4-15
4.10. CR1 Test Vector Classification Results 4-16
4.11. CR2 Test Vector Classification Results 4-17
4.12. CR3 Test Vector Classification Results 4-17
4.13. CR4 Test Vector Classification Results 4-18
4.14. CR5 Test Vector Classification Results 4-18
4.15. HR1 Test Vector Classification Results 4-20
4.16. HR2 Test Vector Classisication Results 4-20
4.17, HR3 Test Vector Classification Results 4-21

4.18 HR4 Test Vector Classification Results

............... 4-21

Table Page
A.1. Probability Matrices for Run 1 Center at Class Averages A-2
A.2. Probability Matrices for Run 1 Nodes at Data Points A-3
A.3. Probability Matrices for Run 2 Center at Class Averages A-4
A.4. Probability Matrices for Run 2 Nodes at Data Points A-5
A.5. Run R3MSE Training History Data. A-6
A.6. Run R3aMSE Training History Data A-7
A.7. Run R3aCE Training History Data A-8
A.8. Run R3aCIF'M Training History Data A-9
A.9. Run ? Center at Class Averages-Seed 6 A-9

A.10.Probability Matrices for Run 3 Center at Class Averages A-10

A.11.Probability Matrices for Run 3 Nodes at Data Points A-11
A.12.Probability Matrices for RSMSE Networks A-12
A.13.Probability Matrices for R3aMSE Networks A-13
A.14.Probability Matrices for R3aCE Networks A-13
A.15.Probability Matrices for R3aCGFM Networks A-14
A.16.Probability Matrices for Run 3 Majority Vote A-14
A.17.Run 4 Center at Class Averages-Seed 2 A-15
A.18.Run 4 CE Training History Data A-15
A.19.Probabilities for Run 4 Center at Class Averages A-16
A.20.Probabilities for Run 4 Center at Class Averages A-16
A.21.Probabilities for Run 4 Cross Entropy A-17

A.22.Probabilities for Run 4 Cross Entropy A-17

ATYT/GE/ENG/90D-11

. Abstract
™~ Hamo

The major goals of this resezreli were to determine if Artificial Neural Networks
(ANNs) could be trained to classify the correlation signatures of two classes of spread
spectrum signals and four classes of spread spectrum signals. Also, the possibility
of training an ANN to classify features of the signatures other than signal class was
investigated. Radial Basis Function Networks and Back-Propagation Networks were

used for the classification problems.

Correlation signatures of four types or classes were obtained from United States
Army Harry Diamond Laboratories. The four types are as follows: direct sequence

(DS), linearly-stepped frequency hopped (LSFH), randomly-driven frequency hopped

(RDFH), and a hybrid of direct sequence and randomly-driven frequency hoi)ped
(HYB). These signatures were preprocessed and separated into various training and

test data sets for presentation to the neural networks.

Radial Basis Function Networks and Back-Propagation Networks trained di-
rectly on two classes (DS and LSFH) and four classes (DS, LSFH, RDFH, and HYB)
of correlation signatures. Classification accuracies ranged from 79% to 92% for the
two class problem and from 70% to 76% for the four class problem. The Radial Basis
Function Networks consistently produced classification accuracies from 5% to 10%
higher than accuracies produced by the Back-Propagation Networks. The Radial
Basis Function Networks produced this classification advantage in significantly less
training time for all cases¥\In attempts to classify the signatures by parameters (e.g.
chip rate of DS signatures 4nd hopping rate of RDI'H signatures) other than signal

type or class, the results w/re inconclusive regarding the usefulness of ANNG.

[

Xi

CLASSIFICATION OF CORRELATION
SIGNATURES OF SPREAD SPECTRUM
SIGNALS USING NEURAL NETWORKS

I Introduction

1.1 Background

Spread-spectrum signals possess some very desirable qualities. The techniques
for generating and decoding these signals make them difficult to jam or intercept
(8:855). Due to these inherent benefits of spread spectrum, the United States can
expect present and future adversaries to use spread spectrum techniques. Therefore,

defeating spread spectrum is extremely important and desirable.

The U. S. Army Harry Diamond Laboratories has developed an acousto-optic
correlator that can very effectively intercept and capture the correlation signatures of
spread spectrum signals. Current methods for examining these captured signatures
involve a human operator and are rot practicnl for real-time investigation of the

signatures during a conflict (1:1-1-1-2).

1.2 Problem

A method for examining the captured correlation signatures in order to identify
features of an adversary’s spread spectrum signals in real-time is needed. In conjunc-
tion with the correlator, a reliable method for extracting features of the signatures

would be a major step toward defeating spread spectrum techniques.

1-1

E
E
3

1.3 Summary of Current Knowledge

The idea of using Artificial Neural Networks (ANNs) to examine the spread
spectrum correlation signatures was suggested by researchers at Harry Diamond Lab-
oratories (HDL). As a result, HDL is currently sponsoring AFIT research involving
ANN classification of spread spectrum signals. An AFIT thesis by DeBerry served
as the first step in this continuing research effort (1). The results of the previous

research will be stated in the following paragraphs.

It was shown that an ANN (three-layer perceptron using the mean-squared
error update rules) will train directly on the correlation signatures of a combination of
direct sequence (DS) and linear-siepped frequency hopped (LSFH) spread spectrum
signals. The perceptron networks correctly classified the test data from the two
classes about 80% of the time after 10, 000 training iterations. At 10,000 iterations,

the networks had reached their maximum classification performance (1:5-1-5-2).

DeBerry also demonstrated that the perceptron’s classification performances
could be modeled as a probability matrix similar to those used to model communi-
cation channels. The symmetry of the matrix was shown to depend on the ratio of

input vectors from the two classes (1:5-2-5-3).

Another result of DeBerry’s thesis effort was that a majority vote of the three
networks (trained on different, but equivalent signals and tested with the same sig-
nals) showed a slight improvement in classification performance over that of a single
network. Also, the make-up of the training set was shown to have a much greater
impact on network performance than either the presentation order of the training

signals or the initialization of the network (1:5-4-5-5).

1.4 Assumptions

It will be assumed that the results are valid from the previous thesis effort using

ANNSs to classify spread spectrum signals. The assumption of validity is justified by

1-2

both the available documentation on the previous thesis effort and the thoroughness

and competency with which the previous thesis committce followed and reviewed

the research effort. Therefore, DeBerry’s results will be used as a benchmark against

which to compare the results of this thesis effort.

1.5

Objectives

The primary objectives of this thesis are to answer the following questions:

. Can a Radial Basis Function (RBT) ANN be trained to classify DS and LSFH

correlalion signatures? If so, how does the classification performance of the

RBF network compare to that of the three-layer perceptron ANN?

. What classification accuracy can be expected when randomly selecting corre-

lation signatures from the pool of available DS and LSFH to serve as training
and test vectors? How does this accuracy compare with the accuracy produced

by ANNs trained and tested with the vectors as selected for the previous thesis
effort (1)?

. Can the networks be trained to classify correlation signatures from the following

four classes: direct sequence (DS), linear-stepped frequency hopped (LSFH),
randomly-driven frequency hopped (RDFH), and a hybrid of direct sequence
and randomly-driven frequency hopped (HYB). If so, how does the addition of

the two classes affect the performance of the networks?

. Can the classification accuracy of the perceptron or back-propagation networks

be improved by taking a majority vote of three networks using three different
learning algorithms (mean-squared error, cross entropy, and classification figure

of merit) to update the link weights during training?

. Can the back-propagation or RBI' networks be trained to classify parameters

of the correlation signatures other than the signal class?

1-3

1.6 Scope

The eventual goal of using ANNs to classify spread spectrum correlation sig-
natures would be to develop and deploy hardware that could in real-iime detect
features of an adversary’s spread spectrum signals (1:1-2). However, this research
effort will be limited to a software analysis of the signatures in an effort to model

the performance of an eventual hardware system.

As stated in the section above, the analysis will include attempts to train
RBT and perceptron networks with correlation signatures from two and four classes.
First, RBIF networks will be trained with data sets containing the same correlation
signatures as used in the previous thesis effort. Then, the networks will be trained
with data selected at random from the set of signatures available for testing and
training. These training attempts will be repeated for the four classes of signatures.
If the perceptron networks can learn on the randomized data, a majority vote of
networks using three types of back-propagation learning algorithms will be taken
and analyzed. Finally, attempts will be made to train the networks on the chip rate

of DS correlation signatures and the hopping rate of RDFH correlation signatures.

1.7 Methodology

The approach of this thesis effort will be very similar to that of the previous
thesis effort for the two class problem. The HDL will transmit the acousto-optic
correlation signature data files to an AFIT computer via MILNET. The data files
will be pre-processed on a personal computer to the format required by the ANN
simulator. The ANN simulator to be used in this effort was written by D. Zahirniak
(17). For this effort, the software will be run on SUN 3 workstations. The ANNs will
be trained with processed data files from the four classes of spread spectrum signals
and then tested with different data files from the four classes. The guidelines for
the research experiments are identified in a previous section of this chapter entitled

Scope. The output classification performance of the ANNs will be processed on

1-4

a personal computer into a format suitable for presentation in the thesis and for

analysis of the results.

1.8 Thests Organization

Chapter 1 - has served as an introduction to the problem and sets the general guide-

lines for research.

Chapter 2 - will present background material for this research effort. The background
*1ill include information in the networks to be used and examples of recent research

using these networks.
Chapter 3 - will contain the methodology for this research effort.
Chapter 4 - will present the results of the research effort.

Chapter 5 - will contain the conclusions drawn from the research results as well as

recommendations for future related research.

1-5

II. Background Material

2.1 Iniroduction

The U. S. Army Harry Diamond Laboratories is currently sponsoring AFIT
research in the area of classifying spread spectrum signals with Artificial Neural
Networks (ANNs). This new and important area of research will be developed in
this chapter by introducing the signals and networks to be used in the research and

describing several recent research efforts using the networks.

2.2 Spread Spectrum Signals

Spread spectrum signals possess some very desirable properties. Their most
important property is the advantage over interference which makes spread spectrum
systems very difficult to jam (8:855). Since the United States can expect future
adversaries to use spread spectrum, then defeating this technology is very important.
The following sections contain an introduction to spread spectrum theory and an
explanation of the reasoning behind the current research using ANNs to classify

spread spectrum signals.

2.2.1 Theory. A good definition of spread spectrum is as follows:

Spread spectrum is a means of transmission in which the signal occupies
a bandwidth in excess of the minimum necessary to send the information;
the band spread is accomplished by means of a code which is independent
of the data, and a synchronized reception with the code at the receiver
is used for despreading and subsequent data recovery. (8:855)

The common spread spectrum techniques include direct sequence (DS), frequency
hopped (FH), and hybrid (DS/FH). The difference between the various techniques

is the way a code sequence is used to spread the signal spectrum. For example, the

2-1

NN e

RIS R L NN

direct sequence digital code sequence modulates the carrier while the code sequence
in a frequency hopping system is used to dictate carrier frequency shift increments.
Regardless of the spread spectrum technique used, ‘he code sequence is used to
spread the bandwidth before transmission and is processed with the signal upon

reception to remove the excess bandwidth and allow data recovery (6:1-3).

2.2.2 ANN Connection. The Harry Diamond Laboratories has developed an
acousto-optic correlator that can very effectively intercept and capture the correla-
tion signatures of spread spectrum signals. Current methods for examining these
signatures involve a human operator and are not practical for real-time investigation
of the signals during a conflict. The eventual goal of using ANNs to classify spread
spectrum correlation signatures would be the hardware deyelopment and deployment
of a network that could in real-time detect features of an adversary's spread spectrum

signals. This implementation could ,rove crucial in a future conflict (1:1-1-1-2).

2.8 Artificial Neural Networks

Lippman’s article ” An Introduction to- Computing with Neural Networks” pro-
vides an excellent introduction to ANNs. In general, neural networks consist of com-
putational elements connected by weighted links, The weights are adjusted during
the training and/or use of the network in an attempt to achieve human-like pattern
recognition. Lippman reviewed six major network models by describing the design
and purpose of each. Of these six ANN models, only two, the Kohonen Feature Map
and the Perceptron, can be used with continuous valued input signals such as that
provided to AFIT (3:4-6). DeBerry determined in his research that a three-layer
perceptron or back-propagation network was a good choice for the spread spectrum

classification probtem (1).

However, in a 1989 article entitled "Pattern Classification Using Neural Net-

works”, Lippman discusses a new type of ANN called Radial’ Basis Function (RBT)

2-2

classifiers. These networks have been compared to back-propagation (perceptron)
networks for several speech classification problems. The IRBF networks’ classifica-
tion performances were very similar to the bach-propagation networks’ performances.
The RBF networks required significantly less training time to accomplish the similar

performance (4:62).

Since this research effort will involve both the perceptron and RBF networks,
the following review of ANNs will cover both the multi-layer perceptron using back-
propagation training algorithms and the RBF network using a variety of training

algorithms.

2.4 Mulii-layer Perceptron Topology

The multi-layer perceptron consists of a set of input nodes, output nodes,
and one or more layers of nodes in between. A three-layer perceptron, as shown
in Figure 2.1, has two internal or hidden layers of nodes. The hidden layer nodes
are non-linear computational elements that hold the key to the capabilities of the
perceptron. As shown in “igure 2.2, the node of a multi-layer perceptron sums
weighted inputs from every node in the previous layer of the network and passes
this sum through a non-linearity such as a hard limiter cr a sigmoid (3:4-15). An

internal threshold is then subtracted from the value produced by the non-linearity.

The resulting value is then passed via weighted links to every node on the next layer

of the network (3:5-16).

b i i ot el e

OUTPUT

QUTPUT
LAYER
{4
9
O
SECOND y,\\\
HIDDEN ‘,,
LAYER Y/ \
X
""\4
FIRST \\\
HIDDEN X
LAYER N

INPUT

Figure 2.1. Three-layer Perceptron (3:16)

The output of a node can be expressed by the following functional relationship

(3:5):
N1
y=f(2 wew;—0> (2.1)
=0
where
y = output
w; = i connection weight
z; = i input
0 = threshold
f = nonlinear function

There exist no hard rules as to the number of hidden layer nodes required when

using a multi-layer perceptron (13:57).

Ty ™~

|
\
’ Wy
|
t o
| T i
» /w}v_l
TN-1
0
| /()
-1 1.0
0.5
> a
Figure 2.2. Single Perceptron Node (10:48)
2.5 Multi-layer Perceptron Training
The multi-layer perceptron is trained using a back-propagation training al-
gorithm. Tor back-propagation algorithms, we shall use a sigmoid nonlinearity as
shown in Figure 2.2. The sigmoid takes the following functional form:
S 2.2

where « is the argument of the function in Equation (2.1). Before training the

network, one sets all the link weights and node thresholds to small random values.

2-5

There are three classification objective functions currently used for back-propa-
gation learning to adjust the link weights and node biases during training of the
perceptron networks. These functions are the Mean Square Error (MSE), Cross
Entropy (CE), and the Classification Figure of Merit (CFM) functions (15:217).
Training is accomplished by presenting the continuous valued inputs and the desired
outpwt for each input to the network. As each training vector is presented to the
network, the link weights and the node biases are adjusted based on the chosen
classification furction. These adjustments are the method by which the network
learns the training data (11:322). The next three paragraphs will serve to introduce

the three objective functions.

2.5.1 Mean-Squared Error (MSE) Objective Function. The MSE objective

function used in back-propagation networks takes the following functional form:
1 N
MSE =13 (gn - d,y 23)
N n=1

where NV is the number of output nodes or classes, y, is the network output for node
n, and d, is the desired output for nod ' n. The MSE {unction acts to minimize the
mean-squared erior between the actual and desired outputs of the networks’ output
layer nodes (15:217). The desired output of the output layer node associated with
the correct class is set to 1 and all other output nodes to 0 (3:17). The MSE function
was the first of the three functions to be used with ANNs and is still the most widely

used as evidenced by the number of papers published using this function.

2.5.2 Cross Entropy (CE) Objective Function. The CE objective function
sees a node output as the probabilily that the node’s desired output is a "1” which

would make that node represent. the correct class for a given inpnt, The function

2-6

B p b e ki

LT N RSN

et e, o

[RI Y

~ N

takes the following form:

N
G = =2 3" [dylog(yn) + (1~ du) log(1 ~) (2.4

n=1

where N is the number of output nc s or classes, ¥, is the network output for node
n, and d, is the desired output for node n. The CE function acts to minimize the
cross entropy between the actual and desired r..obability density functions driving a
node (15:217). As with the MSE function, the desired output of the node representing

the correct class is set to 1 and all other nodes’ desired outputs are set to 0.

2.5.8 Classification Figure of Merit (CFM) Objective Function. The CFM

objective function is as follows:

CFM = —— i (——a—> (2.5)

N-1 n=1,nc 1+ e(=Fbnt)
where

bn = Yo—Yn

Yo = response of the correct node
yn = response of the incorrect node

N = total number of output nodes or classes

a = sigmoid scaling parameter

B = sigmoid discontinuity parameter

¢ = sigmoid lateral shift parameter

The CFM function compares the output of the correct node that should be high with
all other nodes that should be low. Then, a sigmoidal controlled by the parameters
o, B, and (is applied to the differences. Thus, the CFM function concentrates

on reducing misclassifications as a means to achieve a higher correct classification

(15:219).

2.5.4 Application of Objective Functions to ANN. In order to apply a partic-

ular objective function to a network, update rules or equations based on the function

2-7

i e i i e i

Loy

P g et R TR T

Pl L0 e 1 Ea e AL

Figure 2.3. Back-Propagation Network

must be developed for the link weights and node offsets. The network will use these
rules to learn the training data. These equations were derived for the MSE, CE, and
CFM objective functions in (17). The MSE and CE update rules were derived by
minimizing the MSE and CE functions with respect to network parameters. There-
fore, the MSE and CE update rules act to minimize the error between the actual
and desired network outputs. However, the CFM objective function is maximized
with respect to the network parameters to derive the CFM update rules. The CFM
update rules act to maximize the difference between the correct output node and all

other output nodes (15:2186).

2.5.5 Definition of Terms of Update Rules. This section of this document
contains the update rules for the link weights and the node offsets of the MSE, CE,
and CFM objective functions. The update rules are for the feed-forward ANN as
shown in Figure 2.3. In the figure, the superscript on a weight identifies the network
layer while the subscripts identify the nodes connected by each link. The following
definitions should aide in understanding of the rules which are listed in the next
subsection:

K = a specific input layer node as shown in Figure 2.3
L = a specific node in first hidden layer as shown in Figure 2.3

M = 2 specific node in second hidden layer as shown in Figure 2.3
N = a specific node in output layer as shown in Figure 2.3

wj; = weight linking a node k in layer 0 to a node | in layer 1
wf, = weight linking a node 1 in layer 1 to a node m in layer 2

w2, = weight linking a node m in layer 2 to a node n in layer 3

w), = weight linking nodes K and L in Figure 2.1
w%,, = weight linking nodes L and M in Figure 2.1
w3y = weight linking nodes M and N in Figure 2.1

0} = node bias for w},
2 : 2
0? = node bias for Wi
03 = node bias for w},,

0}, = node bias for w)y,]
0%; = node bias for w?,, |
03; = node bias for wi,y

Yn = actual output for a node n in output layer
d, = desired output for a node n in output layer ;

99 ;

yn = actual output for output node N of Figure 2.1
dn = desired output for output node N of Figure 2.1
yo = correct node output for CFM function

7 = learning rate

a = sigmoid scaling parameter for CI'M function

B = sigmoid discontinuity parameter for CFM function
¢ = sigmoid lateral shift parameter for CFM function

2 = 1
N = {7o=PicthnTc

2.5.6 MSE, CE, and CFM Update Rules. Each update rule listed below are

for the back-propagation network as shown in Figure 2.3. The letter C is used to

represent the correct output node in the CFM update equations, although node C

is not shown in the figure. The networks adjust the link weights between adjacent

layer nodes based on the weight update equations. The networks use the node bias

equations to calculate the bias or threshold to be subtracted at each node as shown

by Equation (2.1) in Section 2.4. The-superscript (+) refers to the updated value of

a weight or node bias after a training vector has been applied and the superscript

(=) refers to the previous value. The equations are derived in (17).

For the MSE update rules, n =2A/N where A is a constant.
The MSE link weight update equations are as follows:

w?ntz = w?n-;z - 77(?/n - dn)yn(l - ?/n)ym

foreachm=1,2,...,M andn=1,2,...,N

N
Wi, = w127; /] Z[(yn - dn)yn(l - ?/n)'wmn?/m(1 - ym)'!/I]

n=1

foreachl=1,2,...,Land m = 1,2,...,M

210

it

= wy —772 dn)Ya(1 = yn)
n=1
M
X Z ['wmn:‘/m(1 - ym)wlmyl(l - yl)yk]

m=1

foreach k=1,2,...,K and | = 1,2,...,L

The MSE node bias update equations are as follows:

3+
on

2+
em

1+
0

= 0?;_ - n(yn - dn)yn(]- - yn)
foreachn=1,2,...,N

N
= 03: -7 ;[(yn - dn)yn(l - yn)wmnym(l — Ym)]

foreachm=1,2,...,.M

= 01_—712 ynl_yn)
n=1
M
X Z [wmnym(l - ym)wlmyl(l - yl)]

m=1

foreachI=1,2,...,L

For the CE update rules, = A/[NIn(10)] where A is a constant.

The CE link weight update equations are as follows:

w3t

24+

= Wi +0(dn = Yn)ym

foreachm=1,2,...,Mand n=1,2,...,N

N
= wiy +1 3 [(dn = Yn)Wmn¥m(l = ym 9]

n=1
foreachl=1,2,...,Land m=1,2,...,M

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

N M
wll.?. = wll.l_ +17 Z [(dn - yn) Z [wmnym

n=1 m=1

X (1= ym)wnmyp(l - yz)]]
foreach £ =1,2,...,Kand [=1,2,...,L

The CE node bias update equations are as follows:

02+ 02- + 77(dn - '!/n)

for eachn =1,2,...,N

N
07271+ = 0721; + n Z[(dn - yn)wmnym(l - ym)]

n=1

foreachm=1,2,...,M

N M
0ll+ = 01— + n Z [(dn - yn) Z[wmnym

n=1 m=1

X (1= st =]
for each [=1,2,...,L

For the CFM update rules, n = Aaf/(N — 1) where A is a constant.
The CFM link weight update equations are as follows:

For the weight linking a layer 2 node m to an incorrect output node n:

ng;z = w?n-n = 7lzn(l - zn)?/n(l - yn)ym)

foreachm=1,2,...,Mandn=1,2,...,N

For the weight linking a layer 2 node m to a correct output node C:

N
ng-C = w?n_C + n Z [zn(l - zn)yC(l - yC)ym]
n=1,n%c

for eachm =1,2,...,M

2-12

(2:14)

(2.15)

(2.16)

(217)

(2.18)

AP TILE - S

(2.19)

wlzj; = wlm +7 E [20(1 = 2n)[vc(1 — ¥e)

n=1,n%c

X W — yn(]- - yn)wmn]ym(l - ym)yll (2°20)
foreach!/=1,2,...,Land m=1,2,...,.M

M
wﬁ- = wlld'*'n Z 1‘szc1-yc E[wmc ynl"'Jn)
n=1,n#c m=1
M
X Z [wmnym(l Jm)wlmyl 1 - yl)yl»]] (221)
m=1
for each k=1,2,...,K and | =1,2,.
1
Ior the node bias of an incorrect output node n: ;
03 = 037 —nza(1 — 2,)¥n(1 — Yn) (2.22) ‘

foreachn=1,2,...,N

For the node bias of a correct output node C:

0 = 05 +q Z [#a(1 = 2,)ye(1 — yo)) (2.23)
n=1,nsc
N
031+ = ofn_ +7 Z [2a(1 — zn)[?/c(l - Ye)
n=1,n#c
XwWate = Yn(1 = Yn)Wmn)ym(L = ¥m)] (2.24)
foreachm=1,2,...,.M
N M
OF = 0741 >, |z(l—z)y(l—ye) >, [wmc — Ynu(l = Yn)
n=1,n%c m=1
M
< 2 im0~ vt =) (2.29)
=1
fo rn:aaf“1 1-1,2...,L
2-13

2.6 Multi-layer Perceptron Usage

The perceptron network is used by applying inputs of unknown types or classes
to the network inputs. The network should be tested or used with different vectors
than those it was trained with, although the vectors should be similar for the network
to be of use. The network will choose a class which the input signal is most similar

to from the classes presented during training (1:2-7).

2.7 Previous Research Using Perceptrons

A great deal of research has been accomplished over the last few years using
the multi-layer perceptron. The following paragraphs will describe four such research
efforts. In each case, multi-layer perceptrons using back-propagation learning rules

were applied in an attempt to solve an existing problem.

2.7.1 Noise Reduction Using Perceptron. Tamura’s experiments used the
perceptron networks to reduce noise in speech signals. Other available noise re-
duction techniques have limitations due to the necessity of parameter estimates and
other simplifying assumptions. A four-layer perceptron with 60 units per layer was
chosen as a model that could in principle map any set of noisy signals to a set of
noise-free signals. The MSE back-propagation algorithm was used with a sigmoid
as the node non-linearity. The noisy speech was formed by mixing 5000 Japanese
words with non-stationary computer room noise. Tamura chose 216 of these words

to use in training and testing of the networks (12:553-554).

The training was accomplished by using the noisy words as inputs and the
noise-free words as the target outputs. -..e network repeatedly scanned the words
until convergence was achieved in about 200 scans and 3 weeks on an Alliant Super-
computer. The network was iested on the 216 words as well as other words and was

shown to reduce noise. When the noise-reduced speech from the perceptron was

2-14

compared with that from the traditional power spectral method, the perceptron’s

speech was cleaner, although no more intelligible (12:554-556).

2.7.2 Sonar Target Classificalion Using Perceptron. Gorman used a two-
layer perceptron to classify targets using sonar returns. The MSE back-propagation
algorithm was used to train the network. The two targets were a metal cylinder and
a rock shaped like a cylinder. The sonar returns were collected at various aspect
angles. The experiments were designed to determine if the networks could classify
the targets into two classes. Also, the effects that the number of hidden nodes and

the aspect angles would have on classification performance were to be examined

(2:1135-1137).

The experiments were performed with identical training and test vectors on
networks containing 0, 2, 3, 6, 12, and 24 hidden nodes. Each of the networks
were trained with both aspect angle dependent and independent returns. For the
dependent case, returns for network training were selected to insure various aspect

angles were represented. For the independent case, returns were selected at random
(2:1137).

The results showed that the networks would converge with the sonar returns as
inputs. The performance of the networks, in terms of percent of correct classification,
improved as the number of hidden nodes increased from 0 to 12, although increasing
the nodes to 24 produced no further improvement. In terms of aspect angle, the

networks trained with aspect angle independent returns performed better than those

trained with aspect angle dependent returns (2:1138-1140).

2.7.3 Radar Date Classification Using Perceptron. Amnother target recogni-
tion research effort was conducted by Troxel. He used a three-layer perceptron with
MSE back-propagation training rules to classify radar data from tanks and trucks.
The targets were positioned at various aspect angles. Troxel used a doppler seg-

menter on the radar returns and then transformed the segmented returns into a

2-15

position, scale, and rotation invariant (PSRI) feature space. The transformed data
was correlated with the feature space and the peak of the correlation output was
identified. Forty-nine points around the peak were chosen and normalized for pre-
sentation to the networks. The network performed with a classification accuracy of

near 80% on the test data (14:593-609).

2.7.4 Phoneme Recognition Using the MSE, CE, and CFM Functions. Waibel
compared the MSE, CE, and CFM functions for the /b, d, g/ phoneme recognition
task. Japanese speech data was obtained, sampled, parsed of the phonemes and
Hamming windowed. Then, 256-point DFTs were computed and used to gener-
ate coeflicient spectra. The spectra were normalized for presentation to the back-
propagation ANNs (15:216). Specific details concerning the experimental conditions

can be found in (16).

The results showed that the test data error rate for the networks using the
CFM function was 14% lower than the error rate using the MSE function and 18%
lower than the rate when using the L function. Also, due to the disjoint nature
of the misclassified test vectors from the three networks, an arbitration scheme was
developed to reduce misclassifications. The scheme involved summing of the different
networks’ outputs and dividing by the number of outputs summed. The highest
of the arbitrated outputs was chosen as the correct class. Although summing the
outputs of any two of the functions’ networks showed some classification performance
improvement, the best results were obtained when all three different networks were
arbitrated. About 30% of the errors made by the MSE network alone were corrected

when all three types of networks were arbitrated (15).

2-16

e

1 1 [} 1 1
0.9 \ exp(-(x-5)*(x-5)) —
0.8
0.7
0.6
0.5
0.4
0.3
02 -

-

./

Figure 2.4. One Dimensional Radial Basis Function (17)

2.8 Radial Basis Function (RBF) Networks

An RBF is a radially symmetric function with a single maximum. A one
dimensional RBF is shown in Figure 2.4. A RBTI neural network acts to position
the centers of the RBI's into regions where training vectors are present. An RBF
network consists of three layers: an input layer to which the vectors are applied,
a middle layer which places the RBF's, and an output layer with a linear function.
All nodes of the input layer are connected to all nodes of the hidden, middle layer
which are connected to all nodes of the output layer (5:133-135). A example of RBF
network is shown in Figure 2.5. Weights link the input layer to the hidden layer
and the hidden layer to the output layer. There are several algorithms for setting or
adjusting both sets of weights. There are also several rules for determining the size
or spread of the RBI's. The following sections will discuss some of the algorithms
used to calculate the input link weights, the sigma rules used to determine the spread

of the RBFs, and the methods for caiculating the output link weights.

2-17

- F el

Gaussian Linear
Transfer Transfer
Function Function

Figure 2.5. RBF Neural Network (17)

RBT networks differ from the back-propagation networks in several ways. First,
the RBF always have one hidden layer of nodes while the back-propagation networks
may have more than one. The RBT' networks use gaussian-like functions and the
back-propagation networks use sigmoids. The back-propagation networks gener-
ally require thousands of training iterations since all layers of link weights must

be adjusted as function of the outputs. However, most RBF training algorithms

may require one or very few iterations to position the functions. The training time
required for training is usually many time less for RBF networks than for back-
propagation networks. Previous research shows that RBF networks require more
hidden layer nodes and training data than back-propagation networks for some clas-

sification problems (4:62) (5:133-134).

2-18

2.8.1 Nodes at Data Points Algorithm. This training algorithm calls for a
RBF to be centered about a point corresponding to the features of each training
vector. Therefore, a training set of 1,000 vectors would require 1,000 RBFs. The
weight vector for the I** RBF will be the same as the feature vector for the I** training
exeraplar:

W =% (2.26)

Therefore, the output for the I** RBF due to the p** input training vector is as
follows:

K (4r k"‘k!)2
yp = ==\ ok (2.27)

where K is the number of input nodes or sample points per vector, x,; is the value
of the k** sample point of input vector p, zy is the feature vector from input node
to hidden layer node 1, and oy is the spread of the RBT of node I due to input node
k.

Advantages of the Nodes at Data Points algorithm include the negligible time
required for setting weights lirking the input and hidden layers and that each RBF
represents a class of data at it’s peak output. Disadvantages include the large number
of nodes which are required for large sets of training data. The time needed to
compute the link weights between the hidden and output layers increases directly as

the number of hidden layer nodes increases (17).

2.8.2 Kohonen Algorithm. The Kohonen Learning Algorithm is a clustering
algorithm that learns the underlying probability density functions of the training
vectors. TFor this algorithm, weights should be initialized to small random values
and the vectors normalized to the range of the weights. The algorithm works with a
rectangular grid of nodes the size of which must be selected by the network user. As

each input is presented to the network, the Euclidean distance from that input to all

2-19

b e B F o YN EY i S

nodes of the hidden or Xohonen layer is computed based on the following equation:

N
dj =3 (@i = wi;)? (2.28)

i=1

where N is the number of inputs to the network, z; is the input to the ¢** node of
the input layer, and w,, is the weight between the i** input node and the j** hidden
layer node. Then, the weights for the node with smallest distance and other nodes

in the neighborhood of that node are updated by the following equation:
wii(t + 1) = wij(t) + 0z — wiz) (2.29)

where w;, is the weight between the 7** input node and the j** hidden layer node
and z, is the input to the :** node of the input layer, and 5 is the learning parameter
or gain. As training proceeds for a specified number of iterations, the gain, 7, and
the size of the neighborhood decreases (10:64-67). When training is finished, RBFs
would. be positioned to represent a cluster of training vector, hopefully all from the

same class.

An advantage of Kohonen training is that the number of nodes can be much
less than the number of input vectors since one node of RBY can represent many
vectors. A disadvantage is that Kohonen training takes much longer than other types

of RBT training algorithms.

2.8.8 K-Means Algorithm. The K-Means algorithm adjusts the weights from
the input layer to the hidden, middle layer in order to minimize a least mean square
criterion. When this algorithm is used with an RBI network of I hidden layer nodes,

RBFs are assigned to represent the first K training vectors. Then, each successive

2-20

training vector is assigned to a cluster as follows:
Ty €55 if |3 —wsll < Iz, - i (2.30)

fori=1,2,...,K and i # j. For the above expression, %, is the p** pattern vector, S;
is the 7% cluster, @; is the weight associated with S,, and w, is the weight associated
with a different cluster S;. The distances used are Euclidean distances. Once all
the training vectors have been assigned to clusters, the average of each cluster is

computed as follows:

W ===) Tp, (2.31)

where N, is the number of training vectors assigned to the cluster, Z is a pattern
vector assigned to the cluster, and @, is the weight associated with cluster 1. Training
continues until the weights, or cluster centers, no longer change when inputs are

presented (17).

An advantage of this training algorithm is that the number of nodes can be
significantly less than the number of training vectors. A disadvantage is that the
number of nodes must be selected prior to training and there is no formula or method

for determining the best number.

2.8.4 Center at Class/Cluster Averages Algorithm. With this algorithm, the
weights or ciuster centers are adjusted or shifted during training to points represent-
ing the centers of clusters from the same class. The first training vector and the class
of that vector is presented to the network. A node is created with weights to match

this vector. Then, the remaining training vectors are presented to the network and

2-21

clusters are assigned as follows:

z€S; iof |z-wll<|lz-—wm]<C (2.32)

and the class of Z is the same as S;. Here, & is the new ,-attern vector, S; is the
7t cluster, @, is the weight associated with S;, @; is the weight associated with S;,
and C is tae selected cluster radius. If the distances to all present nodes of the same
vector class as the new vector are greater than C, a new node or cluster center is
created. If the new troining vector is assigned to a present cluster, the weights of

that node are adjusted as follows:

TN — B;(1)

@yt +1) = (1) + LT

(2.33)
where @;(¢) is the previous average of the N pattern vectors in that cluster, w,(t+1)
is the average after the addition of the new vector, and Zy4, is the pattern vector
N ++1 (17). Training continues until all training vectors are assigned to a cluster

and the weights are adjusted for the last presented training vector.

Two advantages of the Center at Class Averages algocithm are that the number
of nodes do 1.4t have to be pre-sclected and these nodes may number much less than-
the number of training vectors. A disadvantage of this algorithm is that the radius

C must be pre-selected with no method for determining the best radius.

2-22

TP ML L\ i A o R o T R e DI Rl b D

1o e

2.8.5 Set Sigmas to a Constant Rule. Tor this rule, the sigmas of the RBF's

are set to some constant, C. The output for an RBF node is calculated as follows:

Ypl = =25 Lrca (Epr—wm)? (2.34)

where y,1 is the output for the I** RBF due to the p* training vector, zpx is the value
of the k™ point of input vector p, wy is the weight of RBF node 1 due to the k*

point of input vector p, and K is the number of input layers or sampled points (17).

2.8.6 Set Sigmas at P-Neighbor Averages Rule. For this sigma rule, the width
of the RBF would be set equal to the root mean square of the Euclidean distances
of the P nearest neighboring RBFs (5:137). The distance between two RBI nodes

would be calculated from the following function:
K
dis =Y (wrs — wii)? (2.35)

k=1

where wy; is the weight from input node k to node j, wy, is the weight from input
node k to node i, and K is the number of sample points in the input training vectors.

The spread for the i RBF is set as follows:

1 P
0; = —15 Z d?p (2'36)
p=1

where P is the number of neighbors to be considered and d,, is the distance between

node i and node p (17).

2.8.7 Scale Sigmas by Constant Rule. In this algorithm, the sigma is preset to

a constant and then decreased during training to prevent RBF nodes from responding

2-23

LSRR T RS T B W 1 s

DO S T

strongly to vectors from different classes. The output for each RBT node is calculated
as follows:

Yol = €76 Lopmy (pk=um)® (2.37)

where y, is the output of the I** node due to input pattern p, C is the preset spread,
K is the number of inpui layers or sampied points, @y is the value of the &** sample
point of input vector p, and wy is the weight of RBF node 1 due to the & point of
input vector p. If this calculated y, > T, a preset threshold, then:

ot +1)=(1~-Cait) (2.38)

where C is a scaling constant applied to the sigma until y,; < T. This process is

repeated for all training vectors (17).

2.8.8 Back-Propagation Training. The weights linking the hidden layer or
RBF nodes to the output nodes can be found by any of the three back-propagation al-
gorithms previously introduced. All three algorithm functions (MSE, CE, and CFM)
would use their weight update rules to minimize the chosen function. The training
for these weights would centinue until the error rate reached an acceptable level.
The training time of the networks will increase many times when back-propagation

is used to train the link weights between the hidden layer nodes and the output

nodes.

2-24

A i

L ci

G e

RV RFCT WETAW-FIVE SN LT S ASTE T E SRR AP

2.8.9 Maltriz Inversion. The Matrix Inversion algorithm is a quick, effective
way to calculate the link weights between the RBF and the output nodes. The total

error due to all input vectors is as follows:

Mz

=135

p=lm

(Wom = dpm)’ (2:39)

L\le—-ﬁ

i

where dy, is the desired value for the m** output node due to the p** training vector,
Ypm is the actual value, M is the number of output nodes, P is number of training
vectors. For a particular node B in the hidden layer and a particular node D in the

output layer, the error can be minimized by setting:
OE[dwpp =0 (2.40)

Through a process of taking this derivative, defining several matrices, and manip-

ulating the above equation and the matrices, the following weight equation can be

derived (17):

L [P
WEp =), (Z ypldpD> Npi (2.41)

=1 =1

where
wpp = optimized weight between nodes B and D
L = number of RBF or hidden layer nodes
P = number of training vectors
yp = output of the I** RBT node due to
p** input vector
d,p = desired output of the D% output node
due to the p** input vector
Np = (MT)™?
M = matrix containing the summation, over all

vectors, of the product of each RBI output,
for a given input pattern and the B™
RBF output for that pattern

2-25

L

WA

2.8.10 Radial Basis Function Usage. To use an RBT network, an algorithm
~ for both sets of weights linking the three layers and a sigma rule must be chosen. The
input patterns are then presented ‘o the network along with the desired outputs for
the RBT" algorithms except the Kohonen algorithm. Upon completion of training,
vectors of an unknown class are presented to the network. Based on the position
that the RBT network has placed the set of RBFs, the network chuoses the class of

the vector fiom the classes it was trained on.

2.9 Previous Research Using RBFs

Over the past several years, many research efforts have been accomplished
using RBFs. The RBF networks have been applied to various classification tasks
with success. The following subsections will describe three research efforts in which

RBT networks were applied to classification problems.

2.9.1 Digit Classification Using RBFs. Nowlan used RBF networks to clas-
sify « set of hand drawn digits from twelve subjects. There were 320 training patterns
and 160 test patterns. The patterns were digitized for presentation to the networks.
Nowlan tried both spherical and ellipsoidal gaussians as the RBI's. RBI's were po-
sitioned in the input space by two algorithms. A form of the Nodes at Data Points
algorithm was used in which the gaussians were assigned to points representing the
training vectors with the highest probability of generating that observation. The K-
means algorithm was also used in which all training patterns have an equal impact

on the position of the RBFs (7:4-7).

The results of the experiment showed that networks trained with the K-means
algorithm correctly classified the test data about 4% more accurately than networks
trained using the Nodes at Data Points aigorithm. The spherical RBFs performed
about 2% better than the ellipsoidal RBI's. As the number of hidden layers nodes

increased from 40 to 150, the classification accuracy increased by about 3%. The

2-26

i b

best classification performance with an RBF networks was 94% using 150 spherical
gaussians and the K-means algorithm. In much less CPU tirae, this result equaled

the classification performance of a sophisti. .ied back-propagation network (7

2.9.2 Vowel Recognition Using RBFs. Nowlan also applied a speaker inde-
pendent vowel recognition tasks to KB networks. The training and test vectors
were digitized from the first and second formant frequencies of 10 vowels spoken
by multiple male and female speakers. The networks were trained with 338 vectors
and tested with 333 vectors. This data was applied to networks employing spherical
RBFs and networks employing ellipsoidal RBF's. The two algorithms introduced in
Subsection 2.9.1 were also applied to this problem (7:8-9).

The results again showed that the spherical gaussians provided a higher classi-
fication accuracy than did the ellipsoidal gaussians. Also, the RBF network with 100
gaussians out-performed the RBF network with 20 gaussians. As before, networks
using the K-means algorithm provided better classification accuracy than networks
using the hard algorithm. The best classification accuracy on the test data was 87%.
A network with 100 spherical gaussians trained with a K-means algorithm provided
this result. In a previous experiment, a two-layer back-propagation network had

achieved a classification accuracy of only about 80.2% on the same data (7:9).

2.9.8 Phoneme Labeling using RBFs. Tor this experiment, the data consisted
of vowel tokens segmented from a set of 98 sentences spoken by a single male speaker.
The training set contained 758 tokens and the test set contained 759 tokens. There
were 20 classes of tokens. The speech was sampled and then analyzed by either a
Discrete Fourier Transform analysis or a 20%* order linear predictor analysis. The
gaussians were placed with a Nodes at Data Points algorithm and the exemplar to
receive the RBFs were selected at random. The RBI's’ spreads were determined by

the P-nearest neighbor rule with P =1 or 2 (9:463-464).

2-27

The networks trained and tested with the speech analyzed with a linear pre-
dictor provided a slightly higher classification accuracy than the networks using the
Fourier analyzed speech. Also, the classification accuracy of the RBT networks im-
proved as the number of nodes was increased from 64 to 256. The best classification
accuracy achieved for the test vectors was 73.3% which compared favorably to the
best accuracy of a back-propagation network (73.0%). The RBF networks trained 2
to 3 times faster than did the back-propagation networks (9:464-465).

2.10 Conclusion

The classification of spread spectrum signal using ANNs is a very promising
area of research. The desirability of defeating spread spectrum makes this research
quite important. This importance as well as the successful results from previous
research in the area mandate additional research efforts into the classification of

spread spectrum signals using neural networks.

2-28

III. Methodology

3.1 Introduction

This chapter will provide the details of how the experiments of this thesis will
be performed. First, the resources needed to conduct the research will be discussed.
Then, the notation to be used in the rest of this document will be introduced. Finally,
the design for each experiment will be detailed. Although all experiments will be
introduced in this chapter before any results are reported in Chapter 4, results from

previous runs did affect the design of subsequent runs in several cases.

3.2 Resources

This section will cover the resources used to perform the experiments of this
thesis effort. These resources include the spread spectrum correlation signature data
files, the ANN simulator software, and other software used to prepare the correlation

signatures for presentation to the ANNs.

3.2.1 Spread Spectrum Correlation Signatures. The Harry Diamond Labo-
ratories (HDL), sponsor of this thesis, provided the spread spectrum correlation
signatures used to perform the experiments in this thesis. The signatures included
four classes or types of spread spectrum signals: direct sequence (DS), frequency
hopped stepped across frequency ranges by a linear stepper (LSI'H), frequency
hopped driven by a pseudo-random code (RDFH), and a combination of direct se-
quence and randoinly-driven frequency hopped (HYB). Variations of each type of
spread spectrum signal were simulated by varying parameters such as chip rate,
hopping rate, pseudo-random code, etc. The signals were then fed into an acousto-
optic correlator. The outputs of the correlator (correlation signatures) used for this

thesis effort consisted of 1,000 data points in an ASCII file. Some of these files were

3-1

i
i
|
\
|
i
|

|
i
|

g T Lt s o E e T e i e AR i i \“‘v.l»wa...J

transmitted from HDL to an ATIT computer via MILNET using the file transfer
protocol (I'TP). The rest of the files were copied onto disks and mailed to AFIT.

3.2.2 ANN Simulator Software. The ANN simulator software was developed
by D. Zahirniak (17). The software is written in the ANSI-C language and will be
run on SUN 3 workstations. The software allows the user to choose from several
types of radial basis function (RBF) networks and three types of back-propagation
networks. Many of the available network algorithms and rules wete described in
Chapter 2. The user selects the type of network and specifies the run parameters
from a menu file as shown in Appendix B. The results of the network execution are
written to a file named by the user. The type of network chosen, the parameters
specified, the percent correct classification, and the misclassified vectors can be found
in this output file. In addition, a training and test history file detailing the network
performance at every 1,000 iterations is created for back-propagation networks. An

example of an output file and a history file can also be found in Appendix B.

3.2.8 Data Set Construction. The first step in this research effort was to
transform the received correlation signatures into a form acceptable by the ANN
simulator software. The received data files consisted of {wo columns of 1,000 num-
bers. The left column <ontained the sample numbers (1 to 1,000) while the right
column contained the actual sampled data. These files were imported into LOTUS
1-2-3'" where the left columns were deleted. The remaining data column was printed
in an unformatted (to avoid page breaks) manner to files. These 1,000 point data
files were imported into a software package called DADiSP Worksheet'™ where they
were reduced to 500 points by averaging consecutive data point pairs. The peak
of each 500 point signal was identified and 50 points around this peak were ex-
tracted. The 50 point signals were then normalized to values between +1 and -1.
These normalized signals were written to files in the form of 50 ASCII numbers. A

QuickBASIC'™ program converted these files into the exact format required by the

3-2

IR I

i B gt U b

ANN simulator software. Specific details of the data set construction can be found

in Appendix B.

3.3 Notation and Definitions

The following terms and definitions will be used in the remainder of this doc

ument:

class 1: Direct Sequence (DS) vectors

class 2: Linear Stepped Irequency Hopped (LSFH) vectors
class 3: Randomly Driven Frequency Hopped (RDFH) vectors

class 4: Hybrid (IIYB) vectors

"good” classification: This classification criterium forces the network to choose one

of the training classes fo1 a given input. If the network’s outputs for a given
input were 0.45 for the class 1 output and 0.5 for the class 2 output, the network
would choose class 2. All training and test percentages reported in this thesis
are based on the "good” classification metric except the training history plots

and tables for the back-propagation networks.

"right” classification: This criterium does not force the ANN to choose one of

the training classes for a given input. For the ANN simulator software used
for this thesis, the "right” metric requires a back-propagation network output
to be 0.9 or higher for the network to choose the class represented by that
output. The training history plots and tables reported in Chapter 4 for the
back-propagation networks are based on the "right” classification metric. This
metric is used during network training to force the ANN to learn the training
data much closer than if the “good™ metric was empioyed. The classification
accuracy on the test vectors should be higher when the networks learn the

training vectors closer.

3-3

P(good): The performance criteria used for the ANNs in this thesis is the proba-
bility of *good” classification on the test vectors. If a network yields a correct
"good” classification for 75 of 100 test vectors, then the measured P(good) =

0.75.

P(1]1): The probability of correctly classifying a class 1 test vector. If a network
yields a correct ”good” classification for 30 of 50 class 1 test vectors, then

P(1]1) = 0.60.

P(2]1): The probability of incorrectly classifying a class 1 test vector as a class 2

vector. P(2]1)=1-P(1|1).

Run: A Run is distinguish from others runs by the make-up of the training and test
vectors. The number of classes or the amount of control over wlk.ch vectors
are training and test exemplars are examples of haracteristics that distir.guish
one run from another. The various Runs or data configurations used for the

experiments in this thesis will be cxplained later in this chapter.

R1: The acronym for Run 1.

CA: The acronym for a RBIF network using the Center at Class Averages training

algorithm.

)

P: The acronym for a RBF network using the Nodes at Data Foints training

algorithm.

R1CA: The acronym representing an RBF network using the Center at Class Av-
erages training algorithm trained and tested with vectors of the Run 1 config-

uration.

R2DP: The acronym representing an RBF network using the Nodes at Data Points

training algorithm trained and tested with vectors of the Run 2 configuration.

MSE: Itarlier defined as the acronym for Mean Squared Error. It will also be used
as an acronym for back-propagation networks using the Mean Squared Error

weight and threshold update rules.

3-4

[piahaindet e e "
1 i
t 1
: | MSE :
I 1
! Net 1
| |
: :
! Ma,jority i
Input ' CE: > Vote i~ Output
1 N t 1
: = Rule :
| |
| ¥ i
} CI'M |
: Net :
! |
1 |
g S M J

Figure 3.1. Diagram of a Majority Vote Network

CE: Earlier defined as the acronym for Cross Entropy. It will also be used as an
acronym for back-propagation networks using the Cross Entropy weight and

threshold update rules.

CFM: Earlier defined as the acronym for Classification Figure of Merit. It will also
be used as an acronym for back-propagation networks using the Classification

Figure of Merit weight and threshold update rules.

R3MSE: The Mean Squared Error weight and threshold update rules were used for
a back-propagation network trained and tested with vectors of the R3 config-

uration.

R4CE: Th. Cross Entropy weight and threshold update rules were used for a back-

propagation network trained and tested with vectors of the R4 configuration.

Majority Vote: For this thesis, majority vote will mean that the output of back-
propagation networks using each of the three objective functions (MSE, CE,
CFM) will be arbitrated as shown in Figure 3.1. If ¢vo or more of the three
networks correctly <lassify a given input test vector, then the majority vote

network will also correctly classify the given input vector.

3-5

EIG 1] SN

MV: The acronym for the majority vote networks.

R3MV: The acronym representing a majority vote of the three types of back-
propagation networks all of which were trained and tested with vectors of the

R3 coufiguration.

The parameters that must be set for the RBI networks are as follows:

Nodes in Hidden Layer: For Nodes at Data Points networks, this must be selected.

In general, placing a node or RBF at each training vector yields the best results.
For Center at Class Averages networks, the number of nodes or RBFs used will

be be allocated based on another parameter, the Average Threshold.

Average Threshold: This parameter sets the distance, between a presented input

vector and the centers of the existing RBFs, required for creation of a new RBF
or Cluster. The Average Threshold is only set for Center at Class Averages

networks.

Sigma Threshold: This parameter sets the initial spreads of the RBI's or gaussians

for both the Center at Class Averages networks and the Nodes at Data Points

networks.

Output Threshold: This parameter sets the value of an existing gaussian or RBF
that a presented input vector would have to reach for a new RBF to be created
for a Nodes at Data Points network. For all experiments in this thesis, the
Output Threshold will be set to 1, the peak of the gaussians, in order to assure

a node or RBT will be centered at each training vector data point.

Sigma Factor: This parameter determines the amount by which the RBT spreads
can be adjusted during training of networks using the Sigma Rule of Scale

Sigmas by Constants.

Interference Threshold: This parameter is set to the amount of over!ap of gaussians

or RBFs that is required to cause a reduction in the spread of the gaussians.

3-6

L o

The parameters that must be set for all three types of back-propagation networks

to be used in this thesis are as follows:

Momentum: This parameter helps to control the rate at which a network converges.
Although not shown in the objective function update rules of Section 2.5, a

momentum term was implemented in the simulator software.

Iterations: This parameter is used to control the number of times that tle training

data set will be presented to the network.

Eta: This parameter is the learning rate, 7, used in all weight and node bias update

equations of Section 2.5.

The parameters that must be set for the MSE back-propagation networks are as

follows:

Delta: This parameter controls the allowable difference between the desired correct
output ”1” and the actual value of that output during training. If this value
is set to 0.1, the output node for the correct class must reach 0.9 for training

to cease on that input training vector.

The parameters that must be set for the CE back-propagation networks are as fol-

lows:

Epsilon: This parameter controls the allowable difference between the desired cor-
rect output ”1” and the actual value of that output during training. If this
value is set to 0.1, the output node for the correct class must reach 0.9 for

training to cease on that input training vector.

3-7

The parameters that must be set for the CI'M back-propagation networks are as

follows:

Alpha: This is the sigmoid scaling parameter, a, used in the CFM update rules of

Section 2.5.6.

Beta: This is the discontinuity parameter, B, used in the CF'M update rules of
Section 2.5.6.

Zeta: This is the sigmoid lateral shift parameter, ¢, used in the CFM update rules
of Section 2.5.6.

Delta: This parameter controls the minimum difference between the correct node’s

output value and all incorrect nodes’ output values that should be achieved
during training of the network. For this thesis, thi. parameter was set to 1 and
the CFM networks’ training was controlled by a software modification forcing
the correct node to be a 0.9 or higher for the network’ training history file to

report a vector as being correctly classified.

8.4 Presentation of Network Results

This section will cover the methods to be used for reporting the performance
of the networks used in Runs 1 through 4 of this thesis. One paragraph will cover
the training performance data and another will cover the test performance data that

will be reported in Chapter 4 of this thesis.

8.4.1 Training Performance. The training performance of the networks will
be reported, although this performance will not be the main criteria used to de-
termine the worth of the networks. For all networks, the P(good) achieved on the
training vectors and the number of hidden layer nodes used will be reported. For
the back-propagation networks, an average training performance curve will also be

presented. The training performance at each 1,000 iterations, taken from the history

3-8

P 5o T bl bt LA,

SN VFRL NI RL

§ i at b

files generated by the simulator software, will be averaged for the set of networks
to yield the training performance curve. The data used to generate training perfor-

mance curves ¢an be found in Appendix A.

3.4.2 Test Performance. The classification performance achieved on the test
vectors by each type of network used for each run will be reported in the form of
a table of summary statistics. As several of the definitions in the previcus section
suggest, the reported statistics will be in the form of probabilities. A previous
thesis effort (1) has shown that the P matrix is a valid and useful way of presenting
and evaluating an ANNs classification accuracy performance. Therefore, for each
set of networks trained and tested for Runs 1 through 4 of this thesis, the overall
probability of "good” classification (P(good)) and the conditional probabilities of
"good” classification (e.g. P(1 | 1)) will be reported. The individual networks’
classification performances from which the summary statistics were calculated can

be found in tables in Appendix A.

3.5 Fzperiment Design

This section will explain the experiments to be performed in this thesis effort.
This explanation will include the training and test vector sct configuration used for
each run, the purpose of each run, the types of networks trained and tested in each
run, and the specific parameters selected for each network type. Table 3.1, located

at the end of this section, contains a summary of the set-ups for each run.

3.5.1 Run 1. Tor Run 1 networks, the data will be set-up identical to the
data in a run of the previous thesis effort in the area of classifying spread spectrum
correlation signatures with ANNs (1). The training data will consist of 102 vectors
and the test test data will consist of 100 vectors. For both the training and test
data sets, ha)f will be cluss 1 vector and half class 2 vectors. Although the order of

training vector presentation will be voried for each of the 30 networks to be trained,

3-9

the same vectors will be used for training and testing of the networks in each case.
The data was selected for the training and test data scts based on a log file provided
along with the correlation signatures by HDL. In general, the data set selection
method used insures that each test vector is very similar to a training vector in
signal parameters other than class (e.g. chip rate, PN code used, step-size, and

step-width).

The purpose of Run 1 is to determine if RBF networks can be trained with a
combination of DS and LSFH spread spectrum correlation signatures. If the networks
can train on the data, the performance of the RBF ANNs will be compared to the

back-propagation (MSE update rules) networks trained and tested for a previous
AFIT thesis (1).

The networks to be trained for Run 1 will be two types of RBF networks.
These types are the Center at Class Averages and the Nodes at Data Points net-
works. These two types of networks were chosen based on pieliminary test results.
The Center at Class Averages network was chosen because it offered a good classi-
fication performance in a small amount of time and with a small number of RBT's.
The Nodes at Data Points network was chosen due to a classification performance
unbeatable by other RBF networks tested. Other training algorithms tried in prelim-
inary tests included the K-means and Kohonen algorithms. The K-means networks
could not match, with a similar number of nodes and training time, the Center at
Class Averages networks’ classification accuracy. The Kohonen networks took many
times longer to train than did the Nodes at Data Points networks and provided a

lower classification accuracy.

There will be 30 Center at Class Averages networks and 30 Nodes at Data
Points networks trained and tested with the Run 1 data configuration. The reported
results for R1CA and R1DP will be the average and standard deviation of the clas-
sification accuracies of the individual networks. Both types of RBF networks will

be run with data seeds 1 through 30. These seeds control the randomization of the

3-10

order of the vectors to presented to the ANNs. The selection of the specific parame-
ters for each type of network was also determined based on preliminary testing. The

parameters selected for the R1CA networks are as follows:

Average Threshold = 2
Sigma Threshold = 4
Output Layer Training = Matrix Inversion
Sigma Rule = Scale sigmas by a constant
Interference Threshold = 0.4
Sigma Factor = 0.1

The parameters for the R1IDP networks are as follows:

4

1

Matrix Inversion

Scale sigmas by a constant

Sigma, Threshold
Output Threshold
Output Layer Training
Sigma Rule

fl

Interference Threshold = 04
Sigma Factor = 0.1

3.6.2 Run 2. For Run 2 networks, the data will also be configured in the
anner as the data in a run of the previous thesis effort. The training data

will consist of 85 vectors of which 60% or 51 will be class 1 vectors and 40% or 35
will be class 2 vectors. The training data was generated by randomly removing 17
class 2 training vectors from the 51 class 2 vectors used in training for Run 1. Since
the output of 30 networks will again be averaged for Run 2, 30 different training
vector sets were created by randomly removing 17 class 2 vectors 30 times. The test
data will consist of the same 100 test vectors (50 from each class) that will be used

for Run 1.

There are two purposes for Run 2. One purpose is to determine the impact
that altering the ratio of the training vectors from the two classes will have on the
symmetry of the P matrix. Also, the performance of the RBT networks of Run 2
can be compared to the classification performance of the back-propagation networks

used in the previous thesis effort.

3-11

There will be 30 Center at Class Averages and 30 Nodes at Data Points net-
works trained and tested with the Run 2 data configuration. The reported results
will be the average and standard deviation of the classificati~ . performances of the
individual networks. The data seeds used will be 121 through 150. The specific
parameter choices for the R2CA and R2DP networks are identical to the choices for

the R1CA and R1DP networks respectively.

8.5.8 Run 8. Tor Run 3 networks, the vectors selected to be training vectors
and test vectors will be determined quite differently than the method used for the
previous two runs. The data for Run 3 will be randomized. Although the same 202
vectors will be used as in Run 1, each vector will be a test vector for some networks
and a training vector for some networks. From the 202 vectors (101 class 1 and 101
class 2), 51 class 1 and 51 class 2 vectors will be randomly selected as training vectors
for each individual network. The 100 not chosen to be training vectors will serve as
test vectors. The randomization or data seed will be changed for each network so
that the make-up of the training and test vectors will be different for each network
of a given type. The data selection method used for Run 3 should produce a more
realistic classification performance than the method used for Run 1 in which detaiied

apriori knowledge was employed.

One purpose of Run 3 is to observe the networks’ classification performances
using training and test data sets chosen in a random manner. These performances
will be compared with the classification performances achieved by the Run 1 networks
to identify differences in classification accuracies produced by networks trained and
tested with the different data set configurations. Also, as suggested by Waibel (15),
an arbitration scheme will be employed to take into account the outputs of the MSE,
CE, and CFM nelworks for a single decision. Therefore, a set of all three types of
back-propagation networks (MSE, CE, CFM) will be trained with the Run 3 data

configuration for use in an arbitration scheme. The arbitration scheme will involve

taking a Majority Vote (MV) of the three networks’ classifications to construct a

3-12

MYV classification network. The MV classification performance will be compared to

the performances of the three individual types of back-propagation networks.

For the RBF networks of Run 3, there will again be 30 Center at Class Averages
and 30 Nodes at Data Points networks trained and tested. The reported results will
be the average and standard deviation of the 30 individual networks. The data
seeds used will be 1 through 30. Based on preliminary testing, the specific network
parameters selected for R3CA and R3DP will once again be identical to the choices

for R1CA and R1DP.

There will be 10 MSE back-propagation networks trained and tested with the
Run 3 data configuration. These networks will be trained with data seeds 1 through
10. The initial link weights and node thresholds will be set to different random
values for each of the 10 networks. The 10 R3IMSE networks wil: contain 18 first
layer hidden nodes and 10 second layer hidden nodes. The specific parameters chosen

for the networks are as follows:

Delta = 0.1

Momentum = 0.5

Bta = 0.3
Iterations = 50,000

For the majority vote scheme, 10 MSE, 10 CE, and 10 CF'M networks will be
trained and tested. The network designators for these back-propagation ANNs will
be R3aMSE, R3aCE, and R3aCIFM respectively. The 30 back-propagation networks
will have 18 first hidden layer nodes and 10 second hidden layer nodes. The reported
results will be the average and the standard deviation of the ten networks of each
type. The data seeds used will be 1 through 10 for each type of network. The
initial link weights and node thresholds will be set to the same random values for
each of the 30 networks to be used for the majority vote decision rule. To obtain
the majority vote classification performance, the MSE, CE, and CI'M networks for

data seed 1 will be arbitrated, for data seed 2 will be arbitrated, etc. Therefore,

3-13

il

the R3MV results will also be the average and standard deviation of 10 majority
vote networks. The specific parameters for each type of back-propagation network
were determined by preliminary testing. The parameters selected for the R3aMSE

networks are:

Delta = 0.1
Momentum = 0.1
Eta = 0.3

Iterations = 50,000

The parameters selected for the R3aCE networks are:

Epsilon = 0.05
Momentum = 0.05
Bta = 1.5

Iterations = 30,000

The parameters selected for the R3aCFM networks are:

Alpha = 1.0
Beta = 4.0
Eta = 0.14
Zeta = 0.0
Delta = 1.0
Momentum = 0.1
Iterations = 50,000

3.5.4 Run 4. For Run 4 networks, the data will be configured in the same
manner as it was for Run 3. The only difference is the amount of data. The networks
for Run 4 will be trained and tested with a combination of four classes of vectors
instead of the two classes used in previous runs. There will be a total of 404 vectors
(101 from each class) of which 204 will be training vectors and 200 will be test
vectors. The vectors to be used for training each network will be randomly selected
as were the vectors of Run 3. The reported results will again be the average and

standard deviation for each set of network types.

3-14

g e n ol S pt A adl T W RS w dnta

0.95
0.9 -
0.85 |- -
P(good) 0.8 -
0.75 -
0.7 - -
0.65 -
0.6 ' ' : . ' : ! :

04 06 0.8 1 12 14 16 1.8 2
Average Threshold

Figure 3.2. Run 4 Center at Class Averages - Seed 1

The purpose of Run 4 is to see if the networks will train on the four classes of
spread spectrum correlation signatures. If the networks will train on the data, then
the classification performance of the each type of network trained will be reported
and compared to the classification performance of other networks trained and tested

with the Run 4 data configuration.

For the RBT' networks, preliminary testing was employed to determine the
RBT training algorithm to use and the network parameters to select for the four
class problem. Based on these tests, the Center at Class Averages networks with an
average threshold of 1 was chosen. Figure 3.2 illustrates the effect that varying the
average threshold can have on classification accuracy for the four class problem. The
data used to generate the figure can be found in Table A.17. The preliminary tests
showed that the networks would produce approximately 150 hidden layer nodes or

RBF's with the average thresholds set to 1.

3-15

The network parameters chosen for the 30 Center at Class Averages networks are as

follows:

Average Threshold
Sigma Threshold
Output Layer Training
Sigma Rule
Interference Threshold
Sigma, Factor

1

4

Matrix Inversion

Scale sigmas by a constant
0.4

0.1

There will be ten CE back-propagation networks trained and tested with the

Run 4 data configuration. The CE back-propagation networks with 24 first hidden

layer nodes and 12 second hidden layer nodes were chosen based on the the classi-

fication performances achieved in preliminary testing. The choice for the remaining

network parameters for the Run 4 CE networks are as follows:

Epsilon = 0.05

Momentum = 0.05
Bta = 1.5
Iterations = 50,000

3-16

-

Table 3.1. Experiment Run Parameters

Run Designation

Parameter R1 R2 R3 R4
of Nets
Trained 60 60 100 40
of Classes 2 2 2 4
Randomly Selected
Training Bxemplars| No No Yes Yes
o) Training
Exemplars 102 85 102 204
Training Set Mix
class 1 ——> 50% | 60% 50 % 25 %
class 2 —> 50% | 40 % 50 % 25 %
class 3 —> 25 %
class 4 > 25 %
Identical
Training Sets Yes No Yes Yes
of Test
Exemplars 100 100 100 200
Test Set percent
per class 50% | 50 % 50 % 25 %
Identical
Test Sets Yes Yes No No
Presentation
Order Variable | Variable| Variable | Variable
Majority Vote
Networks No No Yes No
Distribution R1CA | R2CA | R3CA | R4CA
Nomenclatures R1DP | R2DP | R3DP | R4CE
R3MSE
R3aMSE
R3aCE
R3aCI'M
R3IMV

3-17

Table 3.2. Chip Rate Training Data Sets

of Experiment Designation
Chip Rates | Vectors | CR1 | CR2 | CR3 | CR4 | CR5
1.0 MHz 33 16 | 10 | 11 18 | 00
1.5 MHz 24 12 | 10 | 00 00 | 18
2.0 MHz 11 06 { 10 | 00 00 | 00
2.5 MHz 22 11 10 | 00 18 | 18
3.0 MHz 11 06 | 10 | 11 00 | 00
Totals 101 51 50 22 36 36

3.5.5 Direct Sequence Chip Rate Experiments. If an ANN can be trained to
classify spread spectrum correlation signatures based on the technique used to spread
the signals, a next logical step would be to attempt to train ANNs to determine
other features of an adversary’s spread spectrum signals. To this end, ANNs will
be trained on the chip rate of the DS correlation signatures received from the HDL.
There will be 5 experiments or attempts to train the ANNs with various training
data set mixes. Table 3.2 shows the chip rates of the 101 available DS signatures as
well as the number of training vectors of each chip rate that will be used to train
the 5 networks. All vectors not used for training the network of a given experiment

will be used as test vectors for that experiment.

Experiments CR1 and CR2 are obviously designed to see if the networks will
train on the five classes of chip rate. However, experiments CR3, CR4, and CR5 will
be used to report the networks’ classification of vectors with chip rates not used in
training. If the networks can learn to classify based on the chip rates, a classification
pattern should develop in which test vectors with chip rates not used in training are
classified as having the nearest rate used in training. For example, a 3.0 MHz test
vector in Run CR5 would be classified as a 2.5 MHz vector since 2.5 MHz is the

closest rate used in training.

Based on previous runs’ results and preliminary testing, the 5 experiments will

use Nodes at Data Points networks with an RBI' centered at each training vector.

3-18

i ek

Eutnha i K

a4 B L B T Bt o e 2 £AE

Table 3.3. Chip Rate Networks Training Parameters

Network Experiment Designation
Parameters | CR1 | CR2 | CR3 | CR4 | CR5
Sigina

Threshold 40 | 3.0 | 4.0 | 40 | 4.0
Output

Threshold 1.0 | 1.0 | 1.0 | 1.0 | 1.0
Interference

Threshold 03 103 |031]05]03
Sigma.

Factor 0.1 } 0.1 } 0.1 | 01 | 0.1

Matrix Inversion will be used for training the weights between the hidden and output
layers and Scale Sigmas by a Constant rule will be used to adjust the spreads of the

RBFs or gaussians. Table 3.3 shows the specific parameters chosen for the networks.

3.5.6 Frequency Hopped Hopping Rate Ezperiments. Another logical step in
the attempt to train ANNs to determine features of an adversary’s spread spectrum
signals would be to train the networks to classify the hopping rates of RDIFH cor-
relation signatures. To this end, there will be 4 experiments or attempts to train
the ANNs on the hopping rates of the RDFH signatures obtained from the HDL.
Table 3.4 shows the hopping rates of the 173 available RDFH signatures as well as
the number of training vectors of each hopping rate that will be used to train the
networks. All vectors not used for training the network of a given experiment will

be used as test vectors for that experiment.

Experiments HR1 and HR2 are designed to see if the networks will train on the
8 classes of hopping rate. However, experiments HR3 and HR4 will be used to report
the networks’ classification of vectors with hupping rates not used in training. If the
networks can learn to classify based on the hopping rates, a classification pattern

should develop in which test vectors with hopping rates not used in training are

3-19

Table 3.4. Hopping Rate Training Data Sets

Hop Rates | # of | Experiment Designation
(hops/sec) | Vectors [HR1 | HR2 | HR3 | HR4
62.5000 27 14 11 18 00
46.8750 27 14 11 00 24
39.0625 15 08 11 00 00
31.2500 18 09 11 00 00
15.6250 21 11 11 00 00

7.8125 27 14 11 18 24
6.2500 20 10 11 00 00
2.3438 18 09 11 00 00

Totals 173 89 88 36 48

classified as having the nearest rate used in training. For example, a 6.25 hops/sec
test vector in Run CR3 would be c'assified as a 7.1825 hops/sec vector since 7.1825

hops/sec is the closest rate used in training.

Based on previous runs results and preliminary testing, the 4 experiments will
use Nodes at Data Points networks with an RBF centered at each training vector.
Matrix Inversion will be used for training the weights between the hidden and output
layers and Scale Sigmas by a Constant rule will be used to adjust the spreads of the

RBF's or gaussians. Table 3.5 shows the specific parameters chosen for the networks.

3-20

Table 3.5. Hopping Rate Networks Training Parameters

Network Experiment Designation
Parameters | HR1 | HR2 | HR3 | HR4
Sigma

Threshold 4.0 | 40 | 4.0 | 4.0
Output

Threshold 1.0 { 1.0 | 1.0 | 1.0
Interference

Thresheld 0.2 | 0.6 ; 0.3 | 0.95
Sigma

Factor 01 01} 01 | 01

3.6 Conclusion

The results of the experiments described in this chapter can be found in Chap-
ter 4. The results will include the networks’ classification statistics and the impact ’%l

of these statistics on the stated purpose of each experiment.

3 n e

3-21

IV. Results

4.1 Iniroduclion

This chapter will contain the results of the experiments described in Chapter
3. Tor each type of network employed, the training and test performance will be
reported. An analysis of the networks results as it pertains to the stated purpose of
each run will also be included. As in the previous chapter, the networks’ results will
be organized by runs or data configurations. All output summary statistics tables

presented in this chapter are excerpts of tables located in Appendix A.

4.2 Run I - Two Classes Controlled Data Sets

4.2.1 Training Performance. The networks for Run 1 successfully trained on
the selected training vectors. The training performances of both the Center at Class
Averages networks and the Nodes at Data Points networks can be found in Table 4.1.
The number of nodes or RBF's match the number of training exemplars for the Nodes
at Data Points networks while the number of nodes for the Center at Class Averages
networks were determined by the networks based on the selected Average Threshold
of 2. The Center at Class Averages networks trained in about 5 minutes CPU time

and the Nodes at Data Points networks trained in about 15 minutes CPU time.

Table 4.1. Training Statistics for Run 1 Networks

Run # of
ID | Statistic | Nodes | P(good)
R1ICA | Mean | 34.53 | 0.9229

STD 2.29 0.0158
RI1DP | Mean |102.00 | 1.0000

vvvvvvvvv A eV

STD 0.00 0.0000

4-1

ol

L e il T i,

EEPIE7] T P-L PR PNER R

Table 4.2. Output Summary Statistics for Distributions of Run 1

Run
ID Statistic | P(1]1) | P(2]2) | P(good)

R1CA Mean 0.8347 | 0.9253 | 0.8800
STD 0.0360 | 0.0216 | 0.0241
R1DP Mean 0.9000 [0.9400 0.9200
STD 0.0000 | 0.0000 | 0.0000
RIMSE* | Mean 0.7380 | 0.9213 | 0.8297
STD 0.0384 | 0.0560 | 0.0374
* Trained in a previous thesis effort

4.2.2 Classification Accuracy on Test Vectors. The classification accuracy
the Run 1 networks achieved on the test vectors is shown in Table 4.2. While
the Center at Class Averages classification accuracy is based on the average of 30
networks, the Nodes at Data Points is based on just 5 networks since the first 5 Nodes
at Data Points networks (Data Seeds 1 through 5) performed identically. The MSE
classification performance also shown in Table 4.2 is the result of 30 back-propagation

networks trained using the MSE update rules.

4.2.8 Run 1 Summary. The results of the Run 1 networks show that RBF
networks will train on a combination of DS and LS™H spread spectrum correlation
signatures. The best classification performance was achieved using Nodes al Data
Points networks with a hidden layer node ur RBF placed at each of the 102 training
vectors. The classification accuracy is identical from network to network when a node
is placed at each data point. The 30 Center at Class Averages networks achieved a
average classification accuracy 4% lower than the Nodes at Data Points networks.
However, the Center at Class Averages networks trained in about one-third tk. time
required to train the Nodes at Data Poiits networks. Also, the Nodes al Data
Points networks utilizrd approximately three times as many hidden layer nodes as

did the Center at Class Averages networks. Therefore, in this case, a trade-off exists

4-2

L5 N

wer Bt Bl y

LERVILE. PN 5

belween increased training time and number of nodes on one hand and a decreased

classificationn accuracy on the other hand.

The MSE back-propagation networks average classification accuracy on the
test data was more than 5% lower than the Center at Class Averages RBF networks
classification accuracy and more than 9% lower than the Nodes at Data Points RBF
networks classification accuracy. A majority of the classification accuracy difference
can be traced to the differences in classification accuracies on the class 1 DS sig-
natures. Although no training time is available for the MSE networks, literature
states that the training time for RBF networks is generally less than the training
time for back-propagation networks (4) (5). Even if the training times were equal,
the classification accuracy alone forces the conclusion that the RBF networks offer
a substantial improvement over the MSE buck-propagation networks for classifying
the DS and LSFH spread spectrum correlation signatures as configured for Run 1 of

this thesis.

4.8 Run 2 - 60/40% Training Class Mix

4.8.1 Training Performance. The training performances of the Center at
Class Averages networks and the Nodes at Data Points networks are shown in Ta-
ble 4.3. Since the number of nodes required ior both types of networks were less for
Run 2 than for Run 1, the training time required for both types of RBF networks
was slightly less than the training times rcquired for the same network types of Run
1. The Nodes at Data. Pcint networks still required more than twice as long to train

as did the Center at Class Averages networks.

.

3.2 Classification Accuracy on Test Veclors. The classification accuracy on
test vectors achieved in Run 2 is shown in Table 4.4, The classification accuracics

presented for both types of RBT networks are based on the average of 30 networks.

4-3

Table 4.3. Training Statistics for Run 2 Networks

Run # of
ID | Statistic | Nodes | P(good)
R2CA | Mean | 32.27 | 0.9341
STD 1.46 | 0.0235
R2DP | Mean | 85.00 { 1.0000
STD 0.00 0.0000

The MSE classification performance also shown in Table 4.4 is the result of 30 back-

propagation networks trained using the MSE update rules.

Table 4.4. Output Summary Statistics for Distributions of Rin 2

Run
ID Statistic | P(1]1) | P(2]2) | P(good)
R2CA Mean 0.8820 | 0.8273 0.8547
STD 0.0384 | 0.0502 0.0300
R2DP Mean 0.9220 | 0.8727 0.8973
STD 0.0206 | 0.0384 | 0.0220
R2MSE* | Mean | 0.7767 | 0.8320 | 0.8043
STD 0.0485 | 0.0560 0.0370

* Trained in a previous thesis effort

4.8.8 Run 2 Summary. The results of the Run 2 networks show that the
Nodes at Data Points networks again achieved about a 4% better classification ac-
curacy on the test vectors than did the Center ai Class Averages networks. This
accuracy difference is consistent with the results of Run 1. Also, as in Run 1, the
Nodes at Data Poiats networks required more time to train and used more hidden
layer nodes than did the Center at Class Averages networks. The RBT' networks
again achieved a substantially higher classification accuracy than did the MSE back-

propagation networks for the DS and LSFH data as configured for Run 2. As ex-

A MR e 1 A it | TS e g0 e

BTN

pected, the overall classification accuracy decreased for all three types of networks

due to the removal of the 17 training vectors for each network.

The P matrix conditional probabilities were greatly changed by shifting the
training data set class mix from 50% class 1 and 50% class 2 in Run 1 to 60% class
1 and 40% class 2 in Run 2. Table 4.5 contains the average conditional and overall
probabilities achieved using Run 1 and 2 networks. All three types of ANNs produced
a P matrix in Run 1 skewed in favor of P(2 | 2). For Run 2, the RBI networks
(R2CA and R2DP) produced P. matrices skewed in favor of P(1 | 1) while the MSE
back-propagation networks produced a P matrix still skewed in favor of P(2 | 2).
Before the training classes were shifted in favor of class 1, the MSE matrix for Run
1 contained a difference in conditional probabilities (P(2 | 2) - P(1 | 1)) more than
twice as high as the differences of either type of RBI' networks. This factor accounts
for the difference in skew directions produced by the Run 2 networks. The results of
Run 2 show that the P matrix symmetry can be controlled by adjusting the class mix

of the training vectors for RBIF networks as well as for the MSE back-propagation

networks.

Table 4.5. Average Probability Matrices of Runs 1 and 2

Run
ID Statistic | P(1]1) | P(2]2) | P(good)

R1CA Mean | 0.8347 | 0.9253 | 0.8800

R2CA Mean | 0.8820 | 0.8273 | 0.8547

R1DP Mean | 0.9000 | 0.9400 | 0.9200

R2DP Mean | 0.9220 | 0.8727 | 0.8973
RIMSE* | Mean 0.7380 | 0.9213 | 0.8297
R2MSE* | Mean | 0.7767 | 0.8320 | 0.8043
* Trained in a previous thesis effort

4-5

i i

A B) il U el

Table 4.6. Training Statistics for Run 3 Networks

Run # of

1D Statistic | Nodes | P(good)
R3CA Mean 30.57 | 0.9267
STD 2.65 0.0313
R3DP Mean | 102.00 | 0.9993
STD 0.00 0.3774
R3IMSE | Mean |18-10| 1.0000
STD 0.00 0.0000
R3aMSE | Mean |18-10| 1.0000
STD 0.00 0.0000
R3aCE Mean |18-10| 1.0000
STD 0.00 0.0000
R3aCFM | Mean |18-10] 0.8932
STD 0.00 0.0575

4.4 Run 8 - Two Classes Randomly Selected Data Sets

4.4.1 Training Performance. The training statistics for the two Run 3 RBF
networks (R3CA and R3DP) and the four Run 3 back-propagation networks (R3MSE,
R3aMSE, R3aCE, and R3aCI'M) are shown in Tab.. 4.6.

For Run 3, the 30 Center at Class Averages . networks successfully trained
on the randomly selected DS and LSFH signatures, but three of the 30 Nodes at
Data Points networks would not train on the vectors selected based on the data
seeds. For the three seeds, two or more selected training vector data points used to
center the RBFs were too similar to use the Matrix Inversion algorithm for output
layer training of the network. The training data sets forced the matrices used in
the algorithm to become singular or near-singular which prevented the output layer
training. Therefore, the training and test statistics provided for the Nodes at Data
Points nctworks are based only on the 27 networks that did train. In Scction 4.3.3,

alternatives to the Nodes at Data Points Matrix Inversion problem will be discussed.

As in Run 1, the Center at Class Averages networks trained in approximately 5

b

?
E
5

100

80

Avg % 60 -

Correct

40

20 -

0 |] 1 1 1 1 I 1 1

0 5 10 15 20 25 30 35 40 45 50
Iterations X 1000

Figure 4.1. Run R3MSE Training Performance

minutes CPU time and the Nodes at Data Points networks trained in about 15

minutes CPU time.

For the four sets of back-propagation networks trained, the P(good) achieved
on the training data is shown in Table 4.6. Also, plots of the training performances
per 1,000 iterations are shown in Figures 4.1, 4.2, 4.3, and 4.4. The training plots
are based on the "right” classification metric. The data from which the plots were
produced can be found in Appendix A. The plots show that the R3aCE networks
generally trained or converged in less iterations (about 10,000) than did the other
sets of back-propagation networks. If training was terminated at 10,000 iterations,
the R3aCL networks would train faster than the other networks. However, at 10,000
iterations, the CE networks would still require approximately an hour CPU time to

train.

4-7

1)) 1]] i I 1
100 -

80 |- :
Avg % 60
Correct ;
40 -
20 |- 1
0 ! 1 L 1 1 1 1 1 { 1
0 5 10 15 20 25 30 35 40 45 50 |
Iterations X 1000 E
Figure 4.2. Run R3aMSE Training Performance J
1 i 1 1 1 f
100 |- z
80 |- -
Avg % 60 | 1 ;
Correct ;
40 -

20 .
0 1 | 1 | { f
0 5000 10000 15000 20000 25000 30000 ;
Iterations :
Figure 4.3. Run R3aCE Training Performance

4-8

100 —

80 |- -
Avg % 60 |- 1
Correct

40 - -

20 | .

0 1 1 1 1]) | | !

0 5 10 15 20 25 30 35 40 45 50
Iterations X 1000

Figure 4.4. Run R3aCFM Training Performance

4.4.2 Classtfication Accuracy on Test Vectors. The average classification ac-
curacy that the Run 3 networks achieved on the test vectors is skown in Table 4.7.
The back-propagation networks’ results are based on 10 networks each while the
RBF networks’ results are based on 30 and 27 networks as described in the previ-
ous section. The R3aMSE, R3aCE, and R3aCFM test vector classifications were
arbitrated to produce the R3MV classifications.

4.4.83 Nodes at Data Points Training Failure Alternatives. Due to the fact
that 3 out of 30 Nodes at Data Points networks would not train with the Run 3 data
configuration, several possible methods for handling the problem will be introduced.
The Nodes at Data Points networks, with a node or RBF centered at each data
point, has provided the best classification accuracy for Runs 1 through 3. Therefore,

work-arounds to the problem should focus on achieving a classification accuracy as

close as possible to that achieved by the Nodes at Data Points networks.

Table 4.7. Output Summary Statistics for Distributions of Run 3

Run
ID Statistic | P(1|1) | P(2] 2) | P(good)

R3CA Mean | 0.8793 | 0.7567 | 0.8180
STD 0.0680 | 0.0693 | 0.0400
R3DP Mean | 0.8807 | 0.8459 | 0.8633
STD 0.0629 | 0.0546 | 0.0416
R3MSE | Mean | 0.7760 | 0.8160 | 0.7960
STD 0.0974 | 0.0587 | 0.0564
R3aMSE | Mean | 0.8120 | 0.8240 | 0.8180
STD 0.0895 | 0.0409 | 0.0522
R3aCE Mean | 0.8200 | 0.8040 | 0.8120
STD 0.0869 | 0.0479 | 0.0479
R3aCFM | Mean | 0.7720 | 0.6920 | 0.7320
STD 0.1412 | 0.1455 | 0.0836
R3MV Mean | 0.8200 | 0.8020 | 0.8110
STD 0.0827 | 0.0485 | 0.0504

Since only 3 of the 30 Nodes at Data Points networks did not train, a simple
solution to the training failures can be found. The solution is to change the data
seed and run another Nodes at Data Points network. The classification accuracy of
the Nodes at Data Points networks would be achieved at the expense of increasing
the training time. Since the Nodes at Data Points networks train approximately 4
times faster than any of the back-propagation networks, the classification accuracy
and the training time advantage of the Nodes at Data Points networks over the back-
propagation networks would almost certainly be preserved. Although this solution
would work for this specific case, it would probably not be practical in the event of

an actual deployment of a ANN.

A more general solution to the problem would be to substitute an RBI" cluster-
ing training algorithm such as the Center at Class Averages or K-means algorithms
for the Nodes at Data Points algorithm. Although the Center at Class Averages

networks for Runs 1 through 3 of this thesis have been trained using substantially

4-10

g

e e b i

0.95
0.9

08k T

0.8
P(good) 0.75
0.7

0.65

0.6

0.55 N

0.5 | 1] 1 1)

0.5 1 1.5 2 2.5 3 3.5 4
Average Threshold

Iigure 4.5. Run 3 Center at Class Averages - Seed 6

less nodes than the Nodes at Data Points networks, the average threshold can be
adjusted to increase both the number of nodes or RBFs used and the classification
accuracy. [Figure 4.5 illustrates the effect on the classification accuracy when the
average threshold is adjusted. This figure was produced with the Run 3 data config-
uration and all network parameters, except for the average threshold, set identical to
parameters of the 30 Center at Class Averages networks trained for Run 3. With an
average threshold of 0.05, the Center at Class Averages produces a P(good) of 0.89
which is the same as the Nodes as Data Points produced with the same data seed.
The Center at Class Averages network generated 90 nodes or RBFs. The clustering
method of the Center at Class Averages algorithm would force any training data
points similar enough to prevent network training into the same cluster. Thercfore,

this algorithm should work for all seeds.

4.4.4 Run 3 Summary. The results of Run 3 again showed that the Nodes

at Data Points networks (excluding the three that would not train) produced the

4-11

b s L S A

best classification accuracy of the networks trained. The Center at Class Averages,
MSE, and CE networks produced classification accuracics of about 80% or about 5%
lower than the Nodes at Data Points accuracy. For the Run 3 data configuration,
the CT'M produced a low classification accuracy as compared to the other types of

networks.

The differences in the overall classification accuracy and the conditional prob-
abilities between the Run 3 RBF networks and the Run 1 RBF networks are sig-
nificant. The Nodes at Data Points networks and the Center at Class Averages
networks of Run 3 produced overall classification accuracies of about 6% lower than
the same types of networks had produced in Run 1. The MSE back-propagation net-
works produced similar classification accuracies for the data configurations of Runs
1 and 3. For the RBI networks, the Run 1 data configuration proved to contain test
vectors significantly better represented by training data than did the Run 3 data
configuration. Since the Run 1 data sets were selected to contain test vectors with
similar parameters (e.g. chip rate) to the training vectors, the difference in classica-
tion accuracies achieved using the RBF networks in Runs 1 and 3 suggest that these
networks may be useful in classifying signal parameters other than class. Also, the
Run 3 networks produced P matrices that were either skewed in favor of P(1] 1) or
very nearly symmetric whereas the Run 1 P matrices were heavily skewed in favor
of P(2 | 2). The P matrix differences serves as further evidence that the Run 1 data
set configuration originally used in the previous thesis effort is very different from

the data sets produced when training and test vectors were randomly selected from

the pool of 202 DS and LSFH vectors.

Finally, the classification accuracy produced by the majority vote networks
showed no classification accuracy advantage over the MSE and CE networks used in
the majority vote scheme. Although the majority vote arbitration scheme is different
from the arbitration scheme used for the phoneme recognition problem reviewed

in Section 2.7.4, the majority vote scheme may have also produced classification

4-12

accuracy improvement over the individual network types under two conditions: the
CIF'M networks classification performance on the Run 3 data configuration had been
higher and the three types of networks had produced more disjoint misclassified test
vector sets. Ior the phoneme classification problem, the CF'M networks produced a
slightly higher classification accuracy than did the MSE or CE networks and the three
objective functions produced largely disjoint misclassified data sets (15). For the
Run 3 data configuration of this thesis, the CFM networks produced a classification
accuracy substantially lewer than did the MSE and CE networks and the misclassified

vector sets of the MSE and CE networks were very similar.

4.5 Run J - Four Classes Randomly Selected Data Sets

The training statistics for the Run 4 Center at Class Averages networks and
the CE back-propagation networks are shown in Table 4.8. The 30 Center at Class
Averages networks 1 sed an average of almost 150 nodes or RBFs and trained in under
30 minutes CPU time. The 10 CE networks were each trained for 50,000 iterations
which took approximately 5 hours CPU time per network. Figure 4.6 is a plot of the
average training performance of the Run 4 CE networks at each 1,000 iterations.
The CE networks did not train to a steady state despite numerous runs with various

networks parameters in an unsuccessful attempt to achieve such a state. Several

of CE networks with the parameters as chosen for Run 4 were trained to 100,000

iterations. Despite doubling the training time, the networks had still not converged
to a steady state and the classification accuracy on the test vectors decreased slightly

over the additional iterations.

4-13

ERTTTArY

Table 4.8. Training Statistics for Run 4 Networks

100

80

Avg % 60 |-

Correct

40

20

Run # of
ID | Statistic | Nodes | P(good)
R4CA | Mean | 146.40 | 1.0000
STD 4.33 0.0000
R4CE | Mean |24-12] 0.9951
STD 0.00 0.0061

1 1

15 20

25

30 35

Iterations X 1000

4-14

FFigure 4.6. Run 4 CE Training Performance

45

B R R I R A R T

4.5.1 Classification Accuracy on Test Vectors for Run 4. The average classi-
fication accuracy on the test vectors produced by the Center at Class Averages RBF
networks and the CE back-propagation networks can be found in Table 4.9. The 12
conditional probabilities of misclassification of the test vectors and the individual

networks’ classification statistics can be found in Appendix A.

Table 4.9. Output Summary Statistics for Distributions of Run 4

|

Run
ID | Statistic | P(1 1) | P(2]2) | P(3]3) | P(4]4) | P(good)
R4CA | Mean 0.7007 0.7760 0.8293 0.7720 0.7670
STD 0.0698 0.0701 0.0498 0.0854 0.0259
R4CE | Mean 0.6260 0.7040 0.6960 0.7500 0.6940
STD 0.0948 0.0595 0.0602 0.0474 0.0360

4.5.2 Run 4 Summary. The results of Run 4 showed that the ANNs can
be trained to classify a combination of 4 classes of spread spectrum correlation
signatures (DS, LSFH, RDFH, and HYB). The Center at Class Averages networks
produced a classification accuracy more than 7% higher than did the CE networks.
The differences in accuracy and training time combine to show that the Center at
Class Averages clearly outperforms the CE networks for the classification of the Run
4 datasets. Both the Center at Class Averages and the CE networks produced a
lower overall classification accuracy for the Run 4 data configuration than for the
Run 3 data configuration. The addition of the class 3 and 4 vectors produced about
a 5% lower classification accuracy with the Center at Class Averages networks and

a more than 10% lower classification accuracy with the CE networks.

4-15

s

4.6 Chip Rate Results.

4.6.1 Introduction. This section contains the classification results of the 5
DS Chip Rate experiments set up in Chapter 3. The tables in this section list the
chip rates of the vectors used for training in left most column witk the chip rates
of the test vectors listed horizontally across the top. Each table reveals the number
test vectors of a given chip rate which were classified to each class or chip rate used

in training.

Table 4.10. CR1 Test Vector Classification Results

Training | # used for | Test Chip Rates(MHz)
Rates Training 1.0 1.5]2.02.51(3.0
1.0 MHz 16 812111010
1.5 MHz 12 71912720
2.0 MHz 06 1 11010410
2.5 MHz 11 010211415
3.0 MHz 06 110101510
Total Test Vectors | 17 | 12 | 5 |11 | 5

4.6.2 Chip Rate Classification Results. Tor Experiment CR1, about half of
the available vectors from each of the 5 chip rates were used for training and half
for testing. The overall classification accuracy was about 42% on the test vectors.
Although this classification accuracy is low, the misclassified test vectors tended to
be classified to a rate only 0.5 MHz different from the vectors’ actual chip rate. The
1.5 MHz test vectors showed the best classification accuracy while none of the 2.0

and 3.0 MHz test vectors were correctly classified.

4-16

ks
A
b
3
p
3
4
A
3
Al
B
-

Table 4.11. CR2 Test Vector Classification Results
Training | # used for | Test Chip Rates(MFiz)
Rates | Training [1.0]1.5]2.02.5]3.0
1.0 MHz 10 121 2 0 0 0
1.5 MHz 10 7 6 0 0 0
2.0 MHz 10 2 3 0 1 0
2.5 MHz 10 0 2 1 6 0
3.0 MHz 10 2111051
Total Test Vectors | 23 | 14 1 1 (12 | 1

The network vsed in Experiment CRZ produced an overall classification accu-
racy of 49% on the test vectors. This network, trained with 10 vectors of each class,

produced results very similar to network of Experiment 1.

Table 4.12. CR3 Test Vector Classification Results

|| Training | # used for | Test Chip Rates(MHz)

Rates Training {1.0]1.5]2.025]3.0
1.0 M1z 11 1311110 0 0
3.0 MHz 11 9 1131112210

Total Test Vectoxs | 22 | 24 | 11 /221 0

The network for Experiment CR3, trained with 2 classes and tested with 5
classes, produced some unexpected results. Although the 2.5 MHz test vectors were
classified as 3.0 MHz vectors as expected, the 1.0, 2.0, and 3.0 MHz test vector

classifications were all skewed more than expected toward the 3.0 MHz training

class.

4-17

Table 4.13. CR4 Test Vector Classification Results

Training | # used for | Test Chip Rates(MHz)
Rates Training | 1.0 [1.5(2.02.5]3.0
1.0 MHz 18 101130]0¢}0
2.5 MHz 18 5 |11 111 4 |11
Total Test Vectors | 15 | 24 | 11 | 4 | 11

The network used for Experiment CR4 produced results very similar to those
produced in Experiment CR3. A high proportion of the test vectors from the lower

end of the § available chip rates were again classified as a chip rate from the upper

end of the available rates.

Table 4.14. CR5 Test Vector Classification Results

Training | # used for | Test Chip Rates(MHz)
Rates | Training [1.0§1.5[2.0]2.5] 3.0

1.5 MHz 18 24111411 0

2.5 MHz 18 916|713 | 11
Total Test Vectors| 33| 6 |11] 4 | 11

The Experiment CR5 network produced results in which the 1.0 and 3.0 MHz
test >ctors were generally classified to the nearest chip rate used for training. The
2.0 MHz test vectors classifications were split among the two nearest training class
rates that were both 0.5 MHz away. The only unexpected result was that 5 out 6 of

the 1.5 Mz test vectors were classified as 2.5 MHz vectors despite the fact that 1.5

MHz vectors were used in training.

4.6.83 Chip Rate Erperiments Summary. The classification results of the five
networks for the chip rate experiments did not approach the resulis achieved by
the ANNs on the spread spectrum technique classifications reported earlier in this
chapter. Neither five class problem achieved a classification accuracy of over 50%.

For the two class problems, a pattern developed in which the test vectors from the

4-18

ARSI LT,

A e i

2.5 and 3.0 MHz classes responded as expected to training vectors of similar chip
rates. However, test vectors from the lower chip rates also were often classified as 2.5
and 3.0 MHz vectors. In general, the networks produced correct classifications for
some of the classes and the misclassified vectors from the five class problems tended
to be classified to a chip rate as close as possible to the correct rate. These two facts
suggest that further research using ANNs for classifying DS spread spectrum chip

rates from correlation signatures would be useful.

4.7 Hopping Rate Experiment Results

4.7.1 Introduction. This section contains the classification results of the 4
RDFH Hopping Rate experiments set up in Chapter 3. The tables in this section
list the hopping rates of the vectors used for training in left most column with the
hopping rates of the test vectors listed horizontally across the top. These rates have
been rounded to the nearest tenth for presentation purposes. The table for each
experiment shows the number of test vectors of a given hopping rate which were

classified to a class or hopping rate used in training.

4.7.2 Hopping Rate Classification Results. The network used for Experiment
HR1 produced an overall classification accuracy of about 30%. The misclassified

vectors were widely distributed among the incorrect classes.

The network used for Experiment HR2 show an overall classification accuracy

of under 26%.

4-19

kbl e B e e

Table 4.15. HR1 Test Vector Classification Results

Training Test Hopping Rates (hops/sec)
| Rates |+ used for
| (hops/sec) | Training |62.5]46.9/39.1|31.3]15.6/7.8|6.3]2.3
‘ 62.5 14 4 3 1 0 01210160
46.9 14 2 4 3 0 1 121171
39.1 08 ol1f{1|lofofololo _;
31.3 09 31|05]|0f0ofo0]2
15.6 11 1 2 1 1 1111270
7.8 14 22|11 |1|3|1]o0
6.3 10 olo|o]|2]5|4]6]4
2.3 09 1 0 0 0 2 114101]2 3
Total Test Vectors| 13 | 13 | 7 | 9 | 10 [13]10] 9
;
Table 4.16. HR2 Test Vector Classification Results
Training] Test Hopping Rates (hops/sec) 3
Rates |# used for]
(hops/sec) | Training |62.5]46.2139.1|31.3|15.6|7.8|6.3|2.3
62.5 11 a1 oo 2]3f1]o
46.9 11 2 1100]1]of1]1
39.1 11 3 6 3 0 1151040 E
31.3 11 2 0 0 5 1131011
15.6 11 1 1 0 1 2 121311 1
7.8 11 3 3 1 0 0 1]2]0]0
6.3 11 1 2 0 0 0111312
2.3 11 0 2 0 1 3 1012
Total Test Vectors| 16 | 16 | 4 7T 110|169 |7

Table 4.17. HR3 Test Vector Classification Results

Training Test Hopping Rates (hops/sec)
Rates |# used for

(hops/sec) | Training |62.546.9(39.1/31.3{15.6|7.8/6.3[2.3
62.5 18 6 | 13| 8 4 5 4163
7.8 18 3 |14 | 7T | 14165]14]15

Total Test Vectors 9 | 27|15 |18 (21 |9]|20(18

The Nodes at Data Points network used for Experiment HR3 classified the
test vectors from the five lowest hopping rates (2.3 hops/sec through 31.3 hops/sec)
as 7.8 hops/sec vectors about 75% of the time. For the other three classes of test

vectors closer to the 62.5 hops/sec training class, no pattern was observed.

Table 4.18. HR4 Test Vector Classification Results

Training Test Hopping Rates (hops/sec)
Rates |# used for

(hops/sec) | Training |62.5]46.9|39.1{31.3|15.6|7.8(6.32.3
46.9 24 12 1 3 8 8 10512
7.8 24 151 0 7T 15)13 |3 |15}16

Total Test Vectors 27 | 3 |15 118 |21 | 3 |20]18

The results produced by the network used in Experiment HR4 showed that
switching the higher rate training vectors from 62.5 hops/sec to 46.9 hops/sec pro-
duced virtually the same classification results from the networks. The classifications
of test vectors with a hopping rate of 31.3 hops/sec were still skewed heavily to-

ward the 7.8 hops/sec training class despite having a hopping rate closer to the 46.9

hops/sec training class.

4.7.3 Iopping Raie Fxperiments Summary. The classification accuracies pro-
duced by the networks trained with cight classes of hopping rates were much lower

than the accuracies that the ANNs had produced for previous classification problems

4-21

in this chapter. For additional research to be warranted in the area of classifying the
hopping rate of RDIFH spread spectrum signals from captured correlation signatures,

signatures other than the ones used in this thesis should be generated.

4.8 Conclusion

In this chapter, the results of the networks trained and tested for this thesis
were presented and discussed. Chapter 5 will state the conclusions and recommen-

dations for further research that can be drawn from the results in this chapter.

4-22

b
b
K
3
(g
3
v
b
ks
3
1]
b

V. Conclusions and Recommendations

5.1 Conclusions

5.1.1 Two Class Network Performance. Radial Basis Function (RBF) ncural
networks can be trained directly on the correlation signatures of a selected combina-
tion of direct sequence (DS) and linearly-stepped frequency hopped (LSFH) sprcad

spectrum signals.

Nodes at Data Points networks with a node placed at each training vector
provided classification accuracies of about 90% for the test vectors as selected for
Runs 1 and 2 of this thesis. Center at Class Averages networks using significantly less
nodes and training time produced classification accuracies between 85% and 90% for
the same data. Back-propagation networks employing the mean-squared error had

achieved classification accuracies of about 80% for the same data set configurations.

5.1.2 Controlling Probability Matriz Symmetry. The conditional classifica-
tion accuracies or probabilities produced by the Nodes at Data Points and the Center
at Class Averages networks can be controlled by adjusting the proportions of vector

classes in the training data set.

5.1.83 Data Set Selection Method Effects. Given the same vectors from which
to select training and test data sets, the method used to determine which vectors
will be used for training and testing the neural networks can greatly affect the clas-

sification accuracy produced by the networks.

For Run 3 of this thesis, the vectors to be used for training the individual
networks were selected at random from the pool of DS and LSFH signatures. Under
these conditions, the Nodes at Data Points RBF networks produced a classification
accuracy of about 86%. The Center at Class Averages RBF, MSE back-propagation,

and the CE back-propagation networks produced classification accuracies of about

5-1

e s

BTl SAT it i PSS

oo hea ke ANALG e ONSRE

WY S

80%. The CFM back-propagation networks produced an accuracy of only about
73%. The accuracies produced by the RBF networks of Run 3 are about 6% lower
than the accuracies produced by the RBF networks of Run 1.

5.1.4 Majority Vote Results. A majority vote of the three type of back-
propagation networks (MSE, CE, and CFM) trained with the exact same DS and
LST'H correlation signatures did not produce a classification accuracy advantage over

the individual back-propagation networks.

For Run 3 of this thesis, a majority vote network decision as stated above was
produced from the classifications of the three types of back-propagation networks.
The classification accuracy produced by the majority vote arbitration scheme was

approximately equal to that produced by the MSE or CE networks alone.

5.1.5 Four Class Network Performance. A Center at Class Averages RBI
neural network and a CE back-propagation network can be trained directly on the
correlation signatures of a combination of four classes of spread spectrum signals
(direct sequence (DS), linearly-stepped frequency hopped (L3FH), rar.domly-driven
frequency hopped (RDFH) and a hybrid of DS and RDFH (HYB)). The Center at
Class Avurages networks produced a classification accuracy of about 77% while the

CE networks produced an accuracy of near 70%.

5.1.6 Classification Accuracy. Tor the data configurations used in this thesis,
RBF retworks were trained that consistently produced overall test vector classifica-
tion accuracies from 5% to 10% higher than the back-propagation networks trained

and tested with Lhe same dabe.

5.1.7 Training Times. Tor the problem of classifying spread spectrum cor-
relation signatures with peutral networks, RBI networks can be expected to train

in significa-..", iess time than back-propagation networks. The time difference will

Cl:\
[\]

depend on the training data sats used, the networks chosen, and the networks pa-

rameters selected.

5.1.8 Chip and Hopping Rate Networks Performance. The results were in-

conclusive concerning the use of ANNs for classifying the chip rate of DS and the

hopping rate of RDFI spread spectrum signals from captured correlation signatures.

Although some of the chip rate and hopping rate experiment networks trained

for this thesis produced high classification accuracies for some training sets con-

taining two rates, the classification performances of the networks were generally

unpredictabie and unimpressive.

5.2 Recommendations

1.

o

For future research involving the classification of spread spectrum signals using
ANNs, white gaussian noise should be added to the data used to train the
networks. The addition of noise would provide a more realistic test of the

ANNs performance.

Additional research should be performed to determinc if ANNs can be used to
classify features of spread spectrum other than signal type. If future research
is to include further attempts to classify DS chip r~te or RDFH hopping rate,

additional correlation signatures should be obtainad.

. An attempt should be made to develop arbitration schemes that take advantage

of the differences in classifications produced by the various types of ANNs.

. For future research, the training times of the networks should bLe reported due

to importance of training time for many applications.

5-3

S s, B A

ot SR R i s bt

1 P i B YR RN R,

PN

w2t

Appendix A. Data Tables

The following data tables were developed from the output of the various net-
works used in this thesis effort. The summary statistics tables of Chapter 4 are
taken from the probability matrix tables in this appendix. These tables include the
P(good) for each network as well as all conditional probabilities for each network.
The training history data used to produce the training history plots presented in
Chapter 4 are contained in this appendix. Finally, the data used to produce the two

Center at Class Averages versus Average Threshold plots are also contained in this

appendix.

2
;
b
A
4
E
3
9
|
3
2

bR

A T T gl e Y

i a4 5 e

oy

Table A.1. Probability Matrices for Run 1 Center at Class Averages

Net | P(1]1) P(2|1) PA[2) P2[2)] Plgood)

netl 0.84 0.16 0.10 0.90 0.87
net2 0.74 0.26 0.12 0.88 0.81
net3 0.84 0.16 0.06 0.94 0.89
net4 0.90 0.10 0.08 0.92 0.91
netd 0.82 0.18 0.08 0.92 0.87
net6 0.86 0.14 0.08 0.92 0.89
net? 0.86 0.14 0.10 0.90 0.88
netsd 0.84 0.16 0.08 0.92 0.88
net 0.82 0.18 0.06 0.94 0.88
netl0 | 0.82 0.18 0.10 0.90 0.86
netll [0.88 0.12 0.04 0.96 0.92
netl2 | 0.88 0.12 0.04 0.96 0.92
netld | 0.84 0.16 0.06 0.94 0.89
netl4 ; 0.88 0.12 0.08 0.92 0.90
netld | 0.86 0.14 0.06 0.94 0.90
netl6 | 0.80 0.20 0.06 0.94 0.87
netl7 | 0.86 0.14 0.10 0.90 0.88
netl8 | 0.84 0.16 0.04 0.96 0.90
netl9 | 0.82 0.18 0.06 0.94 0.88
net20 | 0.84 0.16 0.04 0.96 0.90
net2l | 0.84 0.16 0.10 0.90 0.87
net22 | 0.82 0.18 0.08 0.92 0.87
net23 | 0.82 0.18 0.10 0.90 0.86
net24 | 0.78 0.22 0.06 0.94 0.86
net25 | 0.74 0.26 0.10 0.90 0.82
net26 | 0.82 0.18 0.08 0.92 0.87
net27 | 0.84 0.16 0.08 0.92 0.88
net28 { 0.34 0.16 0.03 0.92 0.88
net28 | 0.86 0.14 0.06 0.94 0.90
ret30 | 0.84 0.16 0.06 0.94 0.89
Mean | 0.8347 0.1653 0.0747 0.9253 | 0.8800
STD | 0.0360 0.0360 0.0216 0.0216 | 0.0241

Table A.2. Probability Matrices for Run 1 Nodes at Data Points

Net |P(11) P@2]1) P(112) P(2|2) | Plzood)
netl 0.90 0.30 0.06 0.94 0.92
net2 0.90 0.10 0.06 0.94 0.92
net3 0.90 0.20 0.06 0.94 0.92
net4 0.90 0.10 0.06 0.94 0.92
netd 0.90 0.10 0.06 0.94 0.92
Mean 0.90 0.10 0.06 0.94 0.92
STD 0.90 0.00 0.00 0.00 0.00
AJ

g

ot

Kot e

K PR T AR ATt I O P e SR L WIS Bt

Table A.3. Probability Matrices for Run 2 Center at Class Averages

Net [P(L[1) P(2]1) P(1]2) P2] P(good)

netl 0.90 0.10 0.10 0.90 0.90
net2 0.92 0.08 0.20 0.80 0.86
net3 0.82 0.18 0.14 0.86 0.84
netd 0.90 0.10 0.22 0.78 0.84
netd 0.84 0.16 0.12 0.88 0.86
net6 0.92 0.08 0.20 0.80 0.86
net? 0.84 0.16 0.28 0.72 0.78
net8 0.94 0.06 0.20 0.80 0.87
net9 0.90 0.10 0.12 0.88 0.89
netl0 { 0.92 0.08 0.20 0.80 0.86
netll { 0.88 0.12 0.16 0.84 0.86
netl2 | 0.86 0.14 0.24 0.76 0.81
netld | 0.84 0.16 0.20 0.80 0.82
netl4 [0.84 0.16 0.24 0.76 0.80
netld [0.86 0.14 0.18 0.82 0.84
netlé | 0.94 0.06 0.22 0.78 0.86
netl? | 0.84 0.16 0.18 0.82 0.83
netl8 | 0.92 0.08 0.10 0.90 0.91
netl9 | 0.84 0.16 0.08 0.92 0.88
net20 | 0.90 0.10 0.24 0.76 0.83
net2l | 0.90 0.10 0.12 0.88 0.89
net22 | 0.88 0.12 0.16 0.84 0.86
net23 | 0.94 0.06 0.20 0.80 0.87
net24 | 0.90 0.10 0.12 0.88 0.89
net25 | 0.90 0.10 0.16 0.84 0.87
net26 | 0.82 0.18 0.12 0.88 0.85
net27 1 0.92 0.08 0.14 0.86 0.8Y
net28 | 0.82 0.18 0.14 0.86 0.84
net29 [0.88 0.12 0.18 0.82 0.85
net30 [0.88 0.12 0.22 0.78 0.83
Mean | 0.8820 0.1180 0.1727 0.8273 | 0.8547
STD | 0.0384 0.038¢ 0.0502 0.0502 | 0.0300

A-4

Table A.4. Probability Matrices for Run 2 Nodes at Data Points

Net |P(|1) P|1) P12 P2[2)]| P(good)

netl 0.90 0.10 0.10 0.90 0.90
net2 0.92 0.08 0.14 0.86 0.89
net3 0.92 0.08 0.14 0.86 0.89
net4 0.92 0.08 0.18 0.82 0.87
netd 0.92 0.08 0.10 0.90 0.91
net6 0.92 0.08 0.14 0.86 0.89
net? 0.90 0.10 0.20 0.80 0.85
net8 0.96 0.04 0.14 0.86 0.91
net9 0.92 0.08 0.10 0.90 0.91
netl0 | 0.94 0.06 0.12 0.88 0.91
netll | 0.94 0.06 0.14 0.86 0.90
netl2 | 0.90 0.10 0.14 0.86 0.88
netl3 | 0.94 0.06 0.18 0.82 0.88
netl4 | 0.92 0.08 0.08 0.92 0.92
netld | 0.92 0.08 0.10 0.90 0.91
netl6 | 0.92 0.08 0.10 0.90 0.91
netl7 | 0.90 0.10 0.12 0.88 0.89
netl8 | 0.92 0.08 0.10 0.90 0.91
netl9 | 0.92 0.08 0.06 0.94 0.93
net20-| 0.90 0.10 0.20 0.80 0.85
net2l | 0.94 0.06 0.08 0.92 0.93
net22 | 0.90 0.10 0.08 0.92 0.91
net23 | 0.98 0.02 0.16 0.84 0.91
net24 | 0.92 0.08 0.12 0.88 0.90
net25 | 0.96 0.04 0.14 0.86 0.91
net26 | 0.92 0.08 0.12 0.88 0.90
net27 | 0.92 0.08 0.10 0.90 0.91
net28 | 0.88 0.12 0.18 0.82 0.85
net29 | 0.92 0.08 0.08 0.92 0.92
net30 | 0.92 0.08 0.18 0.82 0.87
Mean | 0.9220 0.0780 0.1273 0.8727 | 0.8973
STD | 0.0206 0.0206 0.038¢ 0.0384 | 0.0220

Table A.5. Run R3MSE Training History Data

Iteration net 1 net 2 net 3 net 4 net 5 net 6 net 7 net 8 nest 9 net 10 Mean ST
Fherct Yeeret | Feret Yecret Yecrct Yocret Greret Yocret Yherct Yocret Yocret | %eret
1000 0.00 6.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.69 217
2000 0.00 8.82 0.00 0.00 0.00 0.00 0.00 2.94 0.00 0.00 1.18 2.84
3000 0.00 28.43 0.00 1.96 31.37 0.00 0.00 7.84 0.00 12.7% 8.24 12,21
4000 40.20 30.39 0.00 14.71 26.47 8.82 0.00 6.86 17.65 32.35 17.74 14.11
5000 44.18 57.84 0.00 12,78 49,02 8.82 0.00 32.35 28.43 56.86 29.02 22.62
6060 35.29 59.80 6.00 44.12 42.16 34.31 22.55 60.78 29.41 63.73 39.21 19.65
7000 71.57 67,65 0.00 63.73 74.51 65.69 22.55 70.59 38.23 81.37 55.59 26.46
8000 53.92 69.61 0.00 78.43 75.49 66.67 32,35 80.39 53.92 85.29 59.61 26.27
9000 76.47 82.35 0.00 84.31 74.51 85.29 53.92 90.20 62.75 90.20 70.00 27.24
10000 67.65 87.25 6.86 81.37 81.37 $0.20 74.51 88.24- 58.82 96.08 73.23 25.84
11000 57.84 92.16 13.73 79.41 86.27 92.16 92.16 5z.16 79.41 99.02 78.43 25.50
12000 77.45 94.12 13.73 88.24 75.49 98.04 98,04 2.6 93.14 85,29 91,57 25.08
13000 82.35 96.08 2647 94.12 95.10 99.02 99.02 .08 95.10 95.10 87.84 22.06
14000 85.29 96.08 26.47 93.14 92.16 100.00 99.02 §0.20 98.04 99.02 87.94 22.10
15600 92.16 97.06 15.69 93.14 97.06 100.00 100.00 96.08 99.02 100.00 89,02 25.92
16000 90.20 100.00 20.59 95.10 96.08 100.00 100.00 95.10 100.00 100.00 89.71 24.51
17000 89.22 100.00 17,65 96.07 95.12 100.00 100.00 96.08 100.00 100.00 89.41 25.46
18000 9$7.06 100.00 47.06 98.04 100.00 100.00 100.00 94.12 100.00 100.00 93.63 16.48
19000 92.16 100.00 55.88 99.02 100.00 100.00 100.00 96.08 100.00 100.00 94.31 13.75
20000 97.06 100.00 46.08 98.04 100.00 100.00 100.00 93,14 100.00 100.00 93.43 16.78
21000 94.12 100.00 66.67 99.02 100.00 100.00 100.00 96.08 100,00 100.00 95.59 10.37
22000 95.10 100.00 51.96 99.02 100.00 100.00 100.00 89.22 100.20 100.00 43.53 15.02
23000 92,16 100.00 80.39 98.04 100.00 100.00 100.00 96.08 100.00 100.00 98.67 6.27
24000 92.16 100.00 56.86 99.02 100.00 100.00 100.00 81.37 100.00 160.00 92.94 14.03
25000 93.14 100.00 7647 97,06 100,00 100.00 100.00 $0.20 100.00 100.00 95.69 7.60
26000 97.06 100.00 86.27 97.06 100.00 100.00 100.00 97.06 100.00 100.00 97.74 4.26
27000 100,00 100.00 89.22 99.02 100.60 100.00 100.00 99.02 100,00 100.00 98.73 3.37
28000 100.00 100.00 91.17 98.04 100.00 100.00 100.00 100.00 100.00 100.00 98.92 2.79
25000 100.00 100.00 9117 97.06 100.00 100.00 100.00 100.00 160.00 190.00 98.82 2.84
30000 100.00 100.0C 93.14 99,02 100.00 100.00 100.00 100.00 100.00 100.00 99.22 2.16
31000 100.00 100.00 93.14 96.08 100.00 100.00 100.00 100.00 100.00 100.00 98.92 2.38
32000 100.00 100.00 95.10 98.04 100.00 100.00 100.00 100.00 100.00 100.00 99.31 1.60
33000 100.00 100.00 97.06 98,04 100.00 100.00 100.00 100.00 100.00 100.00 99,51 1.08
34000 100.00 100.00 66.67 96.08 100.00 100.60 100,00 100.00 100.00 100.00 96.27 10.47
35000 100.00 100.00 96.08 97.06 100.00 100,00 100.00 100.00 100.00 100.00 99.31 1.47
36000 100.00 100.00 95.10 99.02 100,00 100.00 100.00 100.00 100.00 100.00 49.41 1.55
37000 100.00 100.00 95.10 96.08 100.00 100.00 100.00 100.00 100.06 100,00 98.12 1.87
38000 100.00 100.00 97.06 96.08 100.00 100,00 100.00 100.00 100.00 100.00 99.31 1.47
39000 100.00 100.00 53.92 94,12 100.00 100.00 100.00 100.00 100.00 100.00 54.80 14.48
40000 100.00 100.00 95.10 96.08 100.00 100.00 100.00 100.00 100.00 100.00 99.12 1.87
41000 100.00 100.00 97.06 96.08 100.060 100.00 100.00 100.00 100.00 100.00 $9.31 1.47
42000 100.00 100.00 97.06 90.20 100.00 100.00 100.00 100.00 100.00 100.00 98.%3 3.14
43000 100.00 100.00 80.39 $6.08 100.00 100.00 160.60 100.00 100.00 100.00 97.65 6.19
44000 100.00 100.00 99.02 91.18 100.00 100.00 100.00 100.00 100.00 100.00 99.02 2.17
45000 100.00 100.00 98.04 97.06 100.00 100.00 100.00 100.00 100.00 100.00 99.51 1.06
46000 100.00 100.00 98.04 97.06 100.00 100.00 100.00 100.00 100.00 100.00 99.51 1.06
47000 100.00 100.00 96.08 74.51 100,00 100,00 100.00 100.00 100.00 100.00 97.06 8.02
48000 100.00 100.00 99.02 99.02 100.00 100.00 100.00 100.00 100.00 100.00 99.80 0.41
49000 100.00 100.00 99.02 100.00 100.00 100.00 100.00 160.00 100.00 100.00 99.90 0.31
50000 100 00 100 00 99 02 100 00 100 00 100 00 100 00 100 00 100 00 100 00 99 90 031

A-6

IR

Fia

P

Table A.6. Run R3aMSE Training History Data

Iterations net 1 net 2 net 3 net 4 net 5 net 6 net 7 net 8 net 9 net 10 Mean STD
Focret Foeret Focret Yecret ocret Yocret Gocret Yocret Ycret Yocret | Yberet | Yoeret

1000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.00
2000 0.00 3.92 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.39 1,24
3000 0.00 7.84 0.00 0.00 0.00 0,00 1.96 0.00 0.00 0.00 0.98 2.49
4000 3.92 6.86 0.00 3.92 2.94 0.00 2.94 0.98 0.00 0.00 2.16 2.35
5000 32.35 26.47 2,94 6.86 9.80 0.00 16.67 3.92 3.92 15.69 11.86 10.78
6000 45.10 39.22 13.73 22,55 41.18 1.96 26.47 19.61 15.69 33.33 25.88 13.79
7000 60.78 55.88 40.20 49.02 56.86 25.49 50.00 37.25 39.22 45.10 45,98 10.73
8000 69.61 66.67 58.82 70.59 67.75 42,16 56.86 52,94 46.08 61.76 59.32 9.89
9000 70.59 68.83 65.69 73.53 72.55 59.80 72.55 67.65 54.90 66.67 67.26 5.96
10000 70.59 77.45 77.45 81.37 73.53 63.73 79.41 71.57 65.69 67.65 72.84 6.02
11000 76.47 78.43 82.35 83:33 78.43 72.55 81.37 73.53 70.59 76.47 77,35 4,27
12000 87.25 83.33 76.47 82.35 86.27 78.43 86.27 78.43 78,43 82.35 81.66 3.87
13000 89.22 89.22 73.53 93.14 93.14 88.24 91.18 88.24 78,43 81.37 86.57 6.59
14000 88.24 90.20 83.33 95.10 89.22 87.25 94.12 86.27 85.29 83.33 88.23 4.06
15000 88.24 92.16 92.16 93.14 96.08 86.27 94,12 88.24 90.20 88.24 $0.88 3.14
16000 90.20 93.14 94.12 95.10 92,04 94.12 96.08 88.24 94.12 89.22 93.24 3.11
17000 89,22 92.16 92.16 96.08 95,10 97.06 95.10 $2.16 93.14 91.18 93.34 2.44-
18000 92.16 93.14 96.08 97.06 99.02 98.04 98.04 89,22 90.20 98.04 95.10 3.61
19000 88.24 95.10 96.08 96,08 100.00 100.00 98.04 93.14 96.08 97.06 95.98 344
20000 91.18 93.14 98.04 99,20 100.00 100.00 98.04 $0.20 99.20 100.00 96.90 3.86
21000 85.29 93.14 98.04 97.06 100.00 100.00 97.06 96.08 99,20 100.00 96.59 4.52
22000 91.18 93.14 98.04 96.08 100.00 100.00 99.02 92.16 99.02 100.00 96.86 3.48
23000 86.27 91.18 $9.02 98.04 100.00 100.00 100.00 97.06 100.00 100.00 97.16 4.70

24000 90.20 92.16 99,02 98.04 100.00 | 100.00 { 100.00 93.14 100.00 | 100,00 97,26 3.86
25000 89.22 78.43 100.00 98.04 100,00 | 100.00 | 100.00 97.06 100.00 { 100.00 96.27 711
26000 94.12 87.25 100 00 98.04- | -100.00 | 100.00 | 100.00 98.04 100.00 | 100.00 97.74 4.14

27000 93.14 93.14 100.00 98.04 100.00 100.00 100.00 94,12 100.00 | 100.00 97.84 3.09
28000 94.12 93.14 100.00 98.04- | 100,00 100.00 100.00 97.08 100.00 | 100.00 98.24 2,65
29000 94.12 84.31 100.00 87.25 | 100.00 100.00 100.00 97.06 100.00 | 100.00 96.27 5.90
30000 96.08 90.20 100,00 96.08 100.00 100.00 100.00 98.04 100.00 | 100.00 98.04 3.20
31000 96.08 82.35 100.00 95.10 100,00 100,00 100.00 95.10 100.00 100.00 96.86 5.54
32000 96.08 90.20 100.00 96.08 100.00 100.00 100.00 97.06 100.00 | 100.00 07.94 3.22
33000 96.08 89,22 100.00 95,10 100.00 100.00 100.00 99.02 100.00 100.00 97.94 3.56
34000 93.14 94.12 100.00 94.12 100.00 100,00 | 100.00 96.08 100.00 | 100.00 97.75 3.00
55000 95,10 92,16 100.00 87.25 100.00 100.00 100.00 94.12 100.00 | 100.00 96.86 4.52

38000 93.14 86.27 100.00 93.14 100.00 | 100.00 |} 100,00 98.04 100.00 | 100.00 97.06 4.71
37000 91.18 90.20 100.00 89.22 100.00 100.00 | 100.00 99.02 100.00 | 100.00 96.96 4.70
36000 94,12 89,22 100,00 91.18 100.00 | 100.00 | 100.00 98.04 100.00 | 100.00 97.26 4.18
239000 94.12 95.10 100.00 88.24 100,00 | 100.00 100.00 99.02 100.00 | 100.00 97.65 3.98
40000 93.14 90.20 100.00 86.27 100,00 | 100.00 | 100.00 95.10 100.00 | 100.00 96.47 5.07
41000 91.18 95.10 100,00 78.43 100,00 | 100.00 | 100.00 95.10 100.00 | 100.00 95,98 6,91
42000 87.25 98.04 100.00 85.29 100.00 | 100.00 | 100.00 93.14 100.00 | 100.00 96.37 5.76
43000 71.57 98.04 100.00 91.18 100,00 | 100.00 | 100.00 90.20 100.00 | 100.00 95.10 9.10
44000 86.27 99.02 100.00 96.08 100.00 | 100.00 | 100.00 84.31 100.00 | 100.00 96.57 6.09
45000 93.14 99,02 100.00 90.20 100.060 | 100,00 | 100.00 93.14 100.00 | 100.00 97.55 3.82
46000 91.18 99.02 100.00 90.20 100.00 | 100.00 | 100.00 98.04 100.00 | 100.00 97.84 3.83
47000 94.12 100.00 100,00 96.08 100.00 { 100.00 | 100.00 97.06 100.00 | 100.00 98,73 2.17

48000 96.08 100.00 100.00 95.10 100.00 100.00 100.00 | 100.00 | 100.00 100.00 99.12 1.87
49000 97.06 100.00 100.00 97.06 100.00 100.00 100.00 99.02 100.00 100.00 98.31 1.23
50000 97 06 100 N9 100 00 96 08 100 00 100 00 10000 | 10000 | 10000 100 00 99 31 147

A-T

Table A.7. Run R3aCE Training History Data

Tteration | net 1 net 2 net 3 net 4 net 5 net < pet”

; net8 net 9 net 10 Mean STD

Serct Focret | %eret Fecret “cret Yecret Yeere ¢ Yeeret | Fheret Yecrct Yocret | %heret

3 1000 0.00 6.86 2.00 2,94 V.00 0.00 588 ' 8,82 0.00 0.00 2.45 3.29
2000 19.61 25.49 31.37 20.59 18.63 16.67 27.45. 11.76 40,20 9.80 22.16 8.73
3000 52.94 54.90 63.73 44.22 +6.47 39.22 54.90 52.94 47.06 55.88 54.22 9.85
4000 95.10 73.53 46.08 83.33 90.20 40.20 78.43 74.51 60,78 69.61 71.18 16.89
5000 95.10 91.18 57.84 96.08 91.18 57.84 89.22 80.39 75.49 81.37 81.87 13.42
6000 95.10 84.31 91.18 90,20 £7.06 67.65 90.20 79.41 89.22 95.10 87.94 8.40
7000 99.02 88.24 91.18 92.16 96.08 79.41 92.16 100.00 84.31 100.00 92.25 6.52
8¢00 99.02 97.06 97.06 89,22 93.14 79.41 99.02 100.00 93.14 100.00 94.71 6.11
9000 98.04 96.08 100.00 97.06 100.00 94,12 100.00 100.00 96.08 100.00 98.14 2,08

10000 99.02 99.02 100.00 96.08 100,00 99.02 100.00 | 100.00 83.33 100.00 97.65 4,91
11000 100.00 | 100.00 | 100.00 98.04 100.00 | 100,00 | 100.00 | 100.060 96.08 100.00 99.41 1.26
12000 100.00 | 100.00 | 100.00 | 100.00 | 1060.00 | 100.00 | 100.00 | 100.00 78.41 100.00 97.84 6.48
13000 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 92,16 100,00 99.22 2.35
14000 100.00 | 100,00 | 100.00 | 100.00 | 100.00 | 100.00 | 390.00 | 100.00 91.18 100.00 99.12 2.65
15000 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 300,00 | 100.00 98.04 100.00 99.80 0.59
16000 100.00 | 100.00 | 100.060 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 95.10 100.00 99,51 1.47
17000 100.00 | 100.00 | 200.00 | 300.00 | 100.00 | 100,00 | 100.00 | 100.00 92.16 100.00 99,22 2,35
18000 100.00 | 100.00 § 1€0.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 95.10 100.00 99.51 1.47
19000 100.00 | 100.00 { 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 98,04 100.00 99.80 0,59
20000 100.00 | 100.00 | 100,00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 97.06 100.00 99.71 0.88
- 21000 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00]| 100.00 | 100.00 99,02 100.00 99.90 0.29
- 22000 100.00 | 100.00 | 100.00 | 100.00 | 200.00 | 100.00 | 100.00 | 100.00 94.12 100.00 99.41 1.76
B 23000 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100,00 94.12 100.00 99.41 1.76
- 24000 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 97.06 100.00 99.72 0.88
25000 100.00 { 100.00 | 100.00 | 100.00 | 100.00 | 100.00 100.00 | 100.00 99.02 100.00 99.90 0.29
: 26000 100,00 { 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 1€0.00 | 100,00 99.02 100.00 99.90 0.29
27000 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 99.02 100.00 99.90 0.29
28000 100,00 | 100.00 | 100.00 | 10C.00 | 100.00 | 100.00 100,00 | 100.00 | 100.00 | 100.00 | 100.00 0.00
29000 100.00 | 100.00 | 100.00 | 100.00 | 100.00 { 100.00 | 100.00 | 100.60 | 100.00 | 160.060 | 100.00 0.00
30000 10000 | 100.00 | 100.00 | 100.00 | 100.00 | 100 00 10000 | 10000 { 10000 100 00 } 100 00 0 00

Table A.8. Run R3aCFM Training History Data

Iteration net 1 net 2 net 3 net 4 net s net 6 net 7 net 8 net 9 net 10 Mean STD
Seret | %heret | %erct | Yeret | %eret | %eret | Yeret | %eret | %eret | %eret | Yeret | %eret

1000 0.00 0.00 0.00 0,00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2000 6.86 37.25 0.00 38.24 33.33 0.00 12,75 15.69 0.00 0.00 14.41 15.30
3000 14.71 45.10 19.61 44.12 43.14 0.00 40.20 16.67 1.96 16.67 24.22 16.59
4000 11.76 49.02 17.65 49.02 47.06 21.57 37.25 34,31 17.65 6.86 29,22 15.24
5000 31.37 50.98 33.33 52.94 48.04 41.18 36.27 36.27 31.37 28.43 39.02 8.36
6000 54.90 50.98 43.14 53.92 49,02 48.04 44,12 37.25 37.25 37.25 45.59 6.48
7000 61.76 48.04 43.14 50.00 51.96 49.02 39.22 39.22 49,02 38.24 46.96 6.88
8000 68.63 46,08 49.02 36.27 52.94 50.98 44.12 48.04 62.75 46.08 50.49 8.81
9000 74.51 29.41 61.76 46,08 44.12 50,00 45.10 54.91 €6.67 46.08 51.86 12,33

10000 78.43 36.27 71.57 41.18 54.90 53.92 50.98 55.88 74,51 50.00 56.76 13.26
11000 79.41 52.94 81.37 52.94 58.82 55.88 60.78 52,94 77.45 56.86 62.94 11.09
12000 84.31 59.80 77.45 52.94 58.82 54.90 65.69 53.92 78.43 58,82 64,51 10.86
13000 83.33 62.75 78.43 54.90 63.72 55.88 68.63 62.75 81.37 57.84 66.96 10.04
14000 83.33 63.73 83.33 50,00 65,69 55.88 71.59 70.59 82,35 54.90 68.14 11.67
15000 85.29 64.71 87.25 50,98 64.71 56.86 76.47 76.47 87.25 €0.78 71.08 12.56
16000 83,33 71.87 88.24 58.82 67.65 56.86 76.47 79.41 85,29 64.71 73,24 10,51
17000 84.31 70.59 89.22 61.76 69.61 57.84 80.39 83.33 87.25 64.71 74.90 10.78
18000 85.29 76.47 39.22 65.69 67.65 57.84 80.39 §3.33 87.25 65.69 75.88 10.36
19000 85.29 90,20 90.20 72.55 71.57 56.86 86.27 82.3% 88.24 63.73 78.73 11.22
20000 86.27 79.41 91.18 74.51 71.57 57.84 87.25 83.33 88.24 76.47 79.61 9.48
21000 87.25 81.37 91.18 75.49 72,55 58.82 87.25 86,27 89.22 7745 80.69 9.39
22000 87.25 83.33 91.18 79.41 72,55 58.82 88.24 89.22 89.22 80.39 81.96 9.45
23000 87.25 84.31 90.02 81.37 74.51 58.82 88.24 90.20 89.22 85,29 82.92 9.23
24000 87.25 86.27 91.18 87.25 73.53 49.02 88.24 91,18 89,22 81.37 82,45 12,21
25000 87.25 85.29 91.18 90.20 73.53 53.92 88.24 91.18 89.22 85.29 83.53 11.01
26000 87.25 85,29 91.18 89.22 74.51 52,94 88.24 91.18 89.22 90.20 83.92 11.32
27000 87.25 86.27 91.18 89.22 74.51 54.90 88.24 91.18 89,22 90.20 84,22 10.80
28000 87.25 83.33 97.06 91.18 74.51 51.96 88.24 91.18 89.22 91.17 84.51 12,23
29000 87.25 83.33 91.18 89.22 74.51 52.94 88.24 91.18 89,22 90.20 83.73 11.31
30000 87.2% 86.27 91.18 92.16 74.51 55.88 88.24 91.18 89,22 93.14 84.90 10.89
31000 87.25 86.27 91.18 92.16 74.51 64,71 £8.24 91.18 89.22 93.14 85.79 8.63
32000 87.25 87.25 91,18 93.14 74.51 68.63 88.24 91.18 89.22 93.14 86.37 7.79
33000 87.25 87.25 91.18 92,16 74.51 72.55 88.24 91.18 89,22 92.16 86.57 6.77
34000 87.25 87.25 91.18 92.16 74.51 73.53 §8.24 91.18 89.22 93.14 86.77 6.65
35000 87.25 89.22 91.18 94.12 74.51 78.43 88,24 91.18 89,22 92.16 86.57 6.77
36000 87.25 90.20 91.18 92.16 74.51 81.37 88,24 91,18 89.22 93.14 87,85 5.45
37000 87.25 80.22 91,18 93.14 74.51 82.35 88.24 91.18 89.22 93.14 87.94 5.39
38000 87.25 90,20 91.18 93.14 74.51 83.33 88.24 91.18 89,22 93.14 88.14 5,33
39000 87.25 90.20 89.22 94.12 74,51 83.33 88.24 91.18 89.22 93.14 88.04 5,35
40000 87.2% 91.18 90.20 94.12 74,51 7941 88.24 91,18 89.22 93.14 87.85 5.89
41000 87.25 90,20 91.18 94,12 74.51 85,29 88.24 91,18 89,22 93.14 88,43 5,28
42000 87.25 91,18 91.18 94,12 71.51 85.29 88.24 91.18 89,22 93.14 88,53 5.32
43000 87.2% 90.20 91.18 94,12 74.51 85.29 88.24 91.18 89.22 93.14 88.43 5.28
44000 87.25 91,18 2118 94.12 74.51 86.27 88.24 91,18 89,22 93.14 88,63 5.27
45000 87.25 92.16 91.18 94.12 74.51 86.27 88,24 91.18 89.22 93.14 88,73 5.32
46000 87.25 92,16 91.18 94.12 74.51 86.27 88,24 91,18 89,22 93.14 88.73 5,32
47000 87.25 92,16 92.16 94.12 74.51 86.27 88.24 91.18 89.22 93.14 88.83 5.37
48000 87.25 92,16 92.16 94,12 74.51 86.27 88,24 91.18 89.22 93.14 88.83 5.37
49000 87.25 92.16 92.16 94.12 74.51 86.27 88.24 91.18 89.22 93:14 88,83 5.37
$0000 87.25 92.16 92.16 94 12 74 81 86.27 88 24 91 18 89 22 93 14 88 83 5 37

Table A.9. Run 3 Center at Class Averages - Seed 6

Average | Number | P(good) | P(good)
Threshold | of Nodes | Training | Test
0.50 90 1.0000 0.8900
1.00 75 1.0000 0.8800
1.50 54 0.9902 0.8500
2.00 32 0.9314 0.8500
2.50 0 0.5412 0.8500
3.00 12 0.8333 0.8200
3.50 8 0.6961 0.7100
4.00 3 0.5000 0.5000

A-9

Table A.10. Probability Matrices for Run 3 Center at Class Averages

Net [P(1|1) P(2]1) P@A]2) P(2]2)| P(good)

netl 0.82 0.18 0.26 0.74 0.78
net2 0.90 0.10 0.24 0.76 0.83
net3 0.74 0.26 0.20 0.80 0.77
net4 0.80 0.20 0.30 0.70 0.75
netd 0.86 0.14 0.24 0.76 0.81
net6 0.90 0.10 0.20 0.80 0.85
net? 0.92 0.08 0.26 0.74 0.83
net8 0.84 0.16 0.28 0.72 0.78
net9 0.80 0.20 0.20 0.80 0.80
netl0 | 1.00 0.00 0.28 0.72 0.86
netll | 0.94 0.06 0.28 0.72 0.83
netl2 | 0.90 0.10 0.26 0.74 0.82
netld [0.94 0.06 0.24 0.76 0.85
netl4 | 0.80 0.20 0.16 0.84 0.82
netld | 0.94 0.06 0.30 0.70 0.82
netl6 | 0.80 0.20 0.18 0.82 0:81
netl7 | 0.92 0.08 0.14 0.86 0.89
netl8 | 0.90 0.10 0.22 0.78 0.84
netl9 | 0.92 0.08 0.28 0.72 0.82
net20 | 0.88 0.12 0.18 0.82 0.85
net2l | 0.74 0.26 0.34 0.66 0.70
net22 | 0.88 0.12 0.20 0.80 0.84
net23 | 0.92 0.08 0.22 0.78 0.85-
net24 | 0.80 0.20- 0.18 0.82 0.81
nci2d | 0.92 0.08 0.28 0.72 0.82
net26 [0.92 0.08 0.26 0.74 0.83
net27 | 0.98 0.02 0.26 0.74 0.86
net28 | 0.98 0.02 0.50 0.50 0.74
net29 | 0.86 0.14 0.14 0.86 0.86
net30 | 0.86 0.14 0.22 0.78 0.82
Mean | 0.8793 0.1207 0.2433 0.7567 0.818
TD | 0.0680 ©0.0686 0.0693 0.0693 | 0.04060

A-10

Table A.11. Probability Matrices for Run 3 Nodes at Data Points

Net [P 1) P211) P12 P(2]2)] Plzood)

netl 0.86 0.14 0.24 0.76 0.81
net2 0.78 0.22 0.24 0.76 0.77
net3 0.86 0.14 0.12 0.88 0.87
netd 0.78 0.22 0.12 0.88 0.83
netd | would not train
net6 0.94 0.06 0.16 0.84 0.89
net7 0.90 0.10 0.20 0.80 0.85
net8 0.86 0.14 0.14 0.86 0.86
net9 0.88 0.12 0.20 0.80 0.84
netl0 0.96 0.04 -0.12 0.88 0.92
netll | would not train
netl2 0.84 0.16 0.12 0.88 0.86
netl3 0.94 0.06 0.14 0.86 0.90
netld 0.88 0.12 0.10 0.90 0.89
netls 0.90 0.10 0.20 0.80 0.85
netl6 0.94 0.06 0.14 0.86 0.90
netl7 0.92 0.08 0.14 0.86 0.89
netl8 0.90 0.10 0.08 0.92 0.91
netl9 0.92 0.08 0.22 0.78 0.85
net20 0.86 0.14 0.14 0.86 0.86
net21 | would not train
net22 0.92 0.08 0.12 0.88 0.90

net23 0.90 0.10 0.18 0.82 0.86

net24 0.82 0.18 0.12 0.88 0.85

net25 0.96 0.04 0.12 0.88 0.92

net26 0.68 0.32 0.14 0.86 0.77

net27 0.94 0.06 0.10 0.90 0.92

net28 0.92 0.08 0.32 0.68 0.80

net29 0.86 0.14 0.14 0.86 0.86

net30 0.86 0.14 0.10 0.90 0.88

Mean | 0.8807 0.1193 0.1541 0.8459 0.8633
STD | 6.0628 0.062% 0.0546 0.0546 $.0410

A-11

Table A.12. Probability Matrices for R3MSE Networks

Net |P(111) P@l.) P(12) P(2]2) | Pleood)
netl 0.72 0.28 0.30 0.70 0.71
net2 0.64 0.36 0.20 0.80 0.72
net3 0.70 0.30 0.08 0.92 0.81
netd 0.72 0.28 0.12 0.88 0.80
netd 0.64 0.36 0.16 0.84 0.74
net6 0.90 0.10 0.22 (.78 0.84
net7 0.78 0.22 0.14 0.86 0.82
net8 0.76 0.24 0.14 0.86 0.81
net9 0.84 0.16 0.20 0.80 0.82
netlo 0.86 0.14 0.24 0.76 0.81
Mean | 0.7560 0.2440 0.1800 0.8200 0.7880
STD | 0.0893 0.0893 0.0646 0.0646 | 0.0464

A-12

Table A.13. Probability Matrices for R3aMSE Networks

Net [P(1[1) PE|1) PA[2) P2]2) [Plgood)
netl 0.78 0.22 0.24 0.76 0.77
net2 0.64 0.36 0.22 0.78 0.71
net3 0.86 0.14 0.12 0.88 0.87
netd | 074 026 014 086 | 0.80
netd 0.78 0.22 0.16 0.84 0.81
net6 0.90 0.10 0.16 0.84 0.87
net7 0.80 0.20 0.20 0.80 0.80
net8 0.78 0.22 0.14 0.86 0.82
net9 0.90 0.10 0.16 0.84 0.87
netl0 0.94 0.06 0.22 0.78 0.86
Mean | 0.8120 0.1830 0.1760 0.8240 0.8180
STD | 0.0895 0.0895 0.0409 0.0409 0.0522

Table A.14. Probability Matrices for R3aCE Networks

Net [P(1]r) P(2]1) P(1]2) P(2]2)| P(good)
netl 0.82 0.18 0.28 0.72 0.77
net2 0.66 0.34 0.24 0.76 0.71
netd 0.82 0.18 0.12 0.88 0.85
net4 0.76 0.24 0.16 0.84 0.80
netd 0.84 0.16 0.18 0.82 0.83
net6 0.94 0.06 0.18 0.82 0.88
net7 0.84 0.16 0.18 0.82 0.83
net8 0.72 0.28 0.16 0.84 0.78
net9 0.92 0.08 0.22 0.78 0.85
netl0 | 0.88 0.12 C.24 0.76 0.82
Mean | 0.8200- 0.1800 0.1960 0.8040 } 92.8120
STD | 0.0869 0.0869 0.0479 0.0479 | 0.0489

A-13

Table A.15. Probability Matrices for R3aCFM Networks

Net | P(111) P(2|1) P]2) P2]2) | Plgood)
netl 0.48 0.52 0.34 0.66 0.57
net2 0.78 0.22 0.30 0.70 0.74
net3 0.70 0.30 0.16 0.84 0.77
netd 0.66 0.34 0.18 0.82 0.74
netd 0.88 0.12 0.64 0.36 0.62
net6 0.88 0.12 0.44 0.56 0.72
net7 0.72 0.28 0.30 0.70 0.71
net8 0.92 0.08 0.28 0.72 0.82
net9 0.76 0.24 0.16 0.84 0.80
netl0 0.94 0.06 0.28 0.72 0.83
Mean | 0.7720 0.2280 0.3080 0.6920 0.7320
__S_TD 0.1412 0.1412 0.1455 0.1455 0.0836

Table A.16. Probability Matrices for Run 3 Majority Vote

Net |P(1|1) P@|1) PA[2) PE[2) | Plgood)
netl 0.78 0.22 0.28 0.72 0.75
net2 0.68 0.32 0.24 0.76 0.72
net3 0.86 0.14 0.12 0.88 0.87
net4 0.72 0.28 0.16 0.84 0.78
netd 0.86 0.14 0.20 0.80 0.83
net6 0.92 0.08 0.22 0.78 0.85
net7 0.76 0.24 0.20 0.80 0.78
net8 0.82 0.18 0.16 0.84 0.83
net9 0.88 0.12 0.16 0.84 0.86
netl0 0.92 0.08 0.24 0.76 0.84
Mean-| 0.8200 0.1800 0.1980 0.8020 0.8110
STD | 0.0827 0.0827 0.0485 0.0485 0.0504

A-14

Table A.17. Run 4 Center at Class Averages - Seed 1

Averare | Number | P(good) | P(good)
Threshold | of Nodes | Training | Test
0.25 196 1.0000 0.7900
0.50 178 1.0000 0.7900
0.75 166 1.0000 0.7950
1.00 154 1.0000 0.7950
1.25 131 1.0000 0.7950
1.50 112 0.9804 0.7600
1.75 84 0.8725 0.6600
2.00 64 0.7745 0.6250

Table A.18. Run 4 CE Training History Data

Iteration net 1 net 2 net 3 net - net 5 net 6 net 7 nhet 8 net 9 netlo Mean STD
Secret | %heret | %heret | $teeet | %erct | Seret | %eret | %erct | %eret | Seret | Yecret | %eret

1000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0,00 0.00 0.00 0.00 0.00
2000 0.00 0.00 0.00 .00 0,00 0.00 0.00 0.00 0.00 2,45 0.2% 0.77
3000 0.49 0.00 8.33 16.67 0.00 0.00 2.45 2.80 0.00 8.82 4.66 5.87
4000 11.27 12,75 8.82 14.22 0.00 9.31 931 12.25 9,80 16.67 10.44 4.44
5000 15.20 15.69 10.78 18.63 5.39 13.2¢4 13.73 15.19 16.67 14.22 13.87 3.64
6000 17.65 18.14 19.61 20.59 12,25 13.24 13.73 15 9 19.61 17.65 16.77 2.96
7000 16.67 18.14 27.45 18.14 18.63 13.73 14.22 17.65 19.61 16.18 18.04 3.80
8000 19.12 22,06 17.16 22,06 21.08 13.73 16,67 22,55 27.94 23.53 20.59 4.05

2000 20.59 18.63 24,51 31,60 12.61 15.09 37.75 29.41 32.84 32.84 20.67 7.81
10000 3136 34,80 25.49 38.28 36.27 16.61 39,22 40.20 51.47 41.18 35.83 8.80
11000 39.71 25.98 40.20 42.16 50,00 29.90 10,69 375 58,33 40.02 41.37 9.47
12000 49.51 31.86 2041 £4.6) 54,41 34,32 50.49 49.51 54.90 50.49 44.95 9.53
13000 53.92 35.29 37.15 43,63 66.18 44.11 63.24 53.92 63.73 49.51 51.13 10,98
14000 64.22 53.43 53.92 47.5% 58.33 $0.49 68.14 57,35 64.71 55,88 57.40 6.59
15000 68.63 50.98 45.59 51.96 73.53 50,00 73.33 53.45 68.14 49,51 58.83 11.01
16000 67.65 50.49 70.5% 63.24- | 70.80 50.43 €9.12 62.75 73.64 52.94 64.01 10.05
17000 67.16 53.43 61.27 69.61 57.84 €6.18 76.96 38,73 78.43 67.65 63.63 11,69
18000 66.18 56,37 77.45 77:45 | 72,85 54.41 79.41 53.33 71.57 74.02 68.77 9.37
19000 75.49 56.86 76.96 77.45 66.67 57.84 87.25 72.06 77.94 63,24 71.18 9.79
20000 69.18 61.27 77.94 §3.29 73.53 66.18 87.75 68.63 80,88 78,43 74,91 8.60
21000 79.41 42.65 82.84 83.33 81,88 66.18 86,76 61.76 58.82 70.10 71.37 14.10
22000 81.37 62.25 76.47 84.80 88.76 75.00 90,69 77,45 83.33 80.39 79.85 7.85
23000 80.88 65.20 76.06 87,25 583.82 74.02 89.22 75.49 78.92 83,82 79.56 7.08
24000 85.29 65.20 69.81 £86.27 88.73 72.05 88.24 82.35 77.45 76,47 79.17 8.29
25000 86.70 67,65 78.92 93.14 86.27 72.08 93.63 80,39 85,29 69.12 81.32 9.36
26000 85.29 69,12 80,88 90,20 80,22 73.53 93.14 84.31 83.33 81.37 83.04 7.38
27000 88.24 67 16 84.80 91.67 87,70 08,14 94,81 82.84 88.24 82.84 83.63 9,18
28000 83.33 74.51 81.37 05.59 92,16 76.08 95.59 83,33 88.24 84.31 85,54 7.28
29000 49,51 69.61 77:45 95:10 91.18 80.39 94,01 88,24 88.24 86.76 82.11 13.94
30000 53.43 80.88 73.53 96.57 £5.78 78.43 91,67 7745 82,35 86.27 80.64 11.75
31000 58.33 81.86 85.29 94,12 91,18 75,08 94.61 83,82 89.71 89,71 84.46 10.85
32000 68,63 85.78 84.80 95.59 97.06 79.90 93.63 85,78 01.18 84.31 86.67 8,42
33000 78.92 78.92 82.84 95,59 97.55 81.86 94.61 81,37 90,20 89.71 87.16 7.20
34000 78.92 78.92 83,33 98.04 94.61 75.49 95.10 84,80 90,20 90.69 87.01 7.82
35000 88.24 81,37 86.76 98,53 94,12 80.88 96,57 86,27 92.6% 91.67 89.71 6.03
36000 88,73 65.69 87.25 98.04 93.14 76,47 90.08 85,78 90.20 87.75 86.91 9.56
37000 90.20 73.04 72.06 98.53 94.12 82,35 95.59 75.98 94.61 92.65 86,91 10.10
38000 94,61 90.69 85.29 96.08 97.06 83.33 96.08 84.31 04.18 90.6¢ 91.23 5,24
39000 95.59 90.69 79.80 98.04 98.04 82,84 94,62 86,76 93.63 88.24 90.83 6.28
40000 98.59 89.71 87.75 97.06 85,78 80.88 95.59 84,80 94.61 83.82 80,56 5.80
41000 95.59 88.73 89.22 96.08 96.08 79.41 95,59 87.25 94.18 91.18 91,33 5.37
42000 94,61 94,61 89,71 98.04 94.61 83.33 96.57 88.73 95.10 91.18 02,65 1.14
43000 94.12 91.67 62.65 03,34 97,06 83.33 97,00 89.71 95.49 89,71 92.40 4.14
44000 95,59 94.12 94,12 66:5y 97.55 83.82 96.57 88.73 95,59 89.71 93.24 441
45000 96.08 85.29 03,14 2608 97,585 82,35 94.81 89,22 93.€3 01.18 91.91 £.96
46000 97,06 96.59 90,69 V333 $8.04 868,27 96,57 90.20 95.10 20.69 93.87 4.12
47000 96.08 91.18 94312 94,63 99.02 85,29 96.08 86.27 94.63 91.67 92,89 4,26
48000 97.06 98.63 92:16 97.08 99,02 84.80 97.06 §9.71 04.61 92.65 94,27 4.49
49000 96,57 98,55 93.14 08.04 98.53 85.78 97,06 88,73 96.08 60.29 91.27 11.72
50000 98.04 96.08 93.14 98.53 99.51 86.27 93 14 89 T1 97 55 88 24 94 02 468

A-15

Table A.19. Probabilities for Run 4 Center at Class Averages

Net FOJ1)y P(211) P@EI1) P@AT) P2 Pzl2y P@EI2) P12y
netl 0.72 0.10 0.12 0.06 0.06 0.86 0.08 0.00
net2 0.72 0.10 0.12 0.06 0.06 0.86 0.08 0.00
netd 0.82 0.00 0.06 0.12 0.24 0.70 0,04 0.02
netd 0.68 0.20 0.02 0.1u 0.14 0.80 0.06 0.00
nets 0.82 0.10 0.08 0.02 0.26 0.68 0.06 0.00
net6 0.70 0.14 0.14 0.02 0.16 0.72 0.12 0,00
net? 0.78 0.02 0.06 0.14 0.28 0.68 0.04 0.00
nets 0.68 0.10 0.16 0.08 0,08 0.80 0.08 0.04
net9 0.58 0.14 0.14 0.14 0.14 0.70 0.12 0.04
net10 0.63 0.14 0.16 0.08 0.12 0.82 0.06 0.00
net11 0.74 0.06 0.08 0.12 0.16 0.68 0,14 0.02
net12 0.58 0,22 0.14 0.06 0.08 0.86 0.06 0.00
net1d 0.72 0.06 0.00 0.22 0.12 0.64 0.24 0.00
netld 0.78 0.08 0.06 0.08 0.22 0.68 0.10 0.00
net1s 0.64 0.18 0.06 0.12 0.20 0.74 0.02 0.04
net16 0.76 0.06 0,06 0.12 0.14 0.72 0.06 0.08
net17 0.72 0.08 0.18 0.02 0.16 0.74 0.10 0.00
net8 0.74 0.06 0.12 0.08 0.12 0.84 0.04 0.00
net19 0.64 0.10 0.12 0.14 0.16 0.76 0.08 0,00
net2” 0.76 0.12 0,06 0.06 0.18 0.74 0.08 0.00
net21 0.6” 0.04 0.20 0.10 0.20 0.76 0.04 0.00
net22 0.72 0.12 2,10 0.06 0.10 6.78 0.12 0.00
net23 0.76 0,04 0.10 0.10 0.26 0.66 0.06 0.02
net24 0.56 0.08 0.04 0.32 0.12 0.82 0.06 0.00
net25 0.62 0.02 0.04 0.32 0.14 0.82 0,02 0.02
net26 0.60 0.14 0.06 0.20 0.02 0.88 0.08 0.02
net2? 0.74 0.10 0.06 0.10 0.12 0.84 0.02 0.02
net28 0.72 0.04 0.14 0.10 0.12 0.74 0,10 0.04
net29 0.72 0.04 0.08 0.16 0.14 0.84 0.00 0.02
net3o0 0.72 0.12 0.02 0.14 0.10 0.82 0.02 0.06
Mean | 0.7007 0.0933 0.G920 0.1140 0.1467 0.7660 0.0727 0.0147
STD 0.0698 0.0531 0.0508 0.0736 0.0627 0.0701 0.0468 0.0210

Table A.20. Probabilities for Run 4 Center at Class Averages

Neo [POTS) PET3) PRI PATY) PATH PRI PETH PGTH | Plesd)
netl 0.02 0.06 0.88 0.04 0.24 0.00 0.04 0.72 0.795 |
net2 0.02 0.06 0.88 0.04 0.24 0.00 0.04 0.72 0.795
netd 0.06 0.06 0.82 0.06 0.16 0.00 0.00 0.84 0.795
net4 0.08 0.10 0.82 0.00 0.12 0.00 0.02 0.86 0.790
nets 0.06 0.12 0.82 0.00 0.18 0.02 0.06 0.74 0.765
net6 0.00 0.10 0,88 0.02 0.08 0.00 0.06 0.86 0.790
net? 0.08 0.02 0.86 0.04 0.12 0.02 0.10 0.76 0.770
nets 0.04 0.08 0.86 0.02 0.08 0.04 0.16 0.72 0.765
net9 0.06 0.12 0.74 0.08 0.06 0.00 0.04 0.90 0.730
itet10 0.08 0.12 0.76 0.04 0.08 0.06 0.02 0.84 0.760
netll 0.08 0.12 0.76 0.04 0.16 0.02 0.14 0.68 0.715
netl2 0.02 0.18 0.80 0.00 0.14 0.06 0.14 0.66 0.725
netld 0.04 0.04 0.86 0.06 0.10 0.00 0.04 0.86 0.770
netld 0.06 0.01 0,90 0.00 0.12 0.02 0.10 0.76 0.780
netld 0.02 0.04 0.88 0.06 0.16 0.04 0.06 0.74 0.750
netié 0.02 0.04 0.84 0,10 0.08 0.02 0.10 0.80 0.780
net17 0.10 0.04 0.82 0.04 0.18 0.04 0.22 0.56 0.710
netls 0.02 0.18 0,80 0.00 0.24 0.00 0.08 0.68 0.765
net19 0.06 0.10 0.82 0.02 0.12 0.02 0.12 0.74 0.740
net20 0.06 0.02 0.88 0.04 0.06 0.00 0,10 0.84 0.805%
net2l 0.06 0.04 0,82 0.08 0.10 0.00 0.10 0.80 0.760
net22 0.02 0.18 0.74 0.06 0.14 0.00 0.06 0.80 0.760
net23 0,08 0.08 0.84 0.02 0.08 0.00 0.02 0.90 0.790
net24 0.02 0.12 0.84 0.02 0.04 0.02 0.06 0.88 0.775
net2b 0.10 0.04 0.84 0.02 0.08 0.02 0.06 0.84 0.780
net26 0.06 0.04 0.90 0.00 0.08 0.16 0.04 0.72 0.775
1627 8.0 830 .02 0.60 0.32 0.02 0.66 0.5 0.70%
net28 0.06 0.06 0.86 0.02 0.12 0.02 0.04 0.82 0.785
net29 0.06 0.12 0.70 0.12 0.18 0.04 0.14 0.64 0.725
net30 0.02 0.14 0.84 0.00 0.12 0 00 9 06 0 82 0 800
Mean 0.0507 - 0.0853 0.8293 0.0347 0.1327 0.0213 0.074v 0.7720 0.7670
STD 0.0272 0.0475 0.0498 0.0319 0.0644 0.0310 0.0510 0.0854 0.0259

A-16

i DX Sl e

oy

a6

Db e e s g

[ERPSIPR TR

PR

roa

Jemte A bd g

T

g g

Table A.21. Probabilities for Run 4 Cross Entropy

Net

RiD)

PTY)

PG

PGII)

P T2)

PZ12)

PET2)

PAT2)

netl
net2
netd
net4
netd
net6
net?
net8
net9
netl0

0.68
0.56
0.78
0.62
0.66
0.62
0.68
0.66
0.42
0.58

0.24
0.18
0.08
0.20
0.22
0.16
0.08
0.18
0.16
0.1

0.04
0.06
0.04
0.08
0.02
0.16
0.00
0.00
0.06
0.08

0.04
0.20
0.10
0.10
0.10
0.06
0.24
0.16
0.36
0.18

0.12
0.20
0.22
0.12
0,24
0.12
0.24
0.12
0.20
0.26

0.68
0.72
0.64
0.80
0.60
0.76
0.68
0.76
0.70
0,70

0.16
0.06
0.08
0.06
0.04
0.12
0.00
0.02
0.04
0.04

0.04
0.02
0.08
0.02
0.12
0.00
0.08
0.10
0.06
0.00

Mean
STD

0.6260
0.0048

0,1660
0.0525

0.0540
0.0472

0.1540
0.0962

0.1840
0.0580

0.7040
0,0595

0.0600
0.0471

0.0520
0.0424

Table A.22. Probabilities for Run 4 Cross Entropy

Net

P(T3)

T3

PET3)

P]3)

P4

PZT4)

PETH)

Plal4)

Flgood)

netl
net2
netd
netd
netd
net6
net?
net$
net9
net10

0.18
0.08
0.12
0.14
0.06
0.02
0.06
0.10
0.10
0.20

0.06
0.16
0.16
0.10
0.16
0.16
0.08
0.12
0.14
0.12

0.72
0.74
0.64
0.70
0.68
0.76
0.78
0.72
0.62
060

0.04
0.02
0.08
0.06
0.10
0.06
0.08
0.06
0.14
0.08

0.16
0.12
0.20
0.14
0.18
0.08
0.20
0.18
0.04
0.16

0.00
0.08
0.00
0.00
0.04
0.06
0.10
0.02
0.14
0.10

0.08
0.08
0.04
0.06
0.06
0.04
0.04
0.06
0.04
002

0.78
0.72
0.76
0.80
0.72
0.82
0,66
0,74
0.78
072

0.715
.585
%.705
0.730
0.665
0.740
0.700
0.720
0.630
0.650

Mean
STD

0.1060
00558

0.1260
0.0366

0.6960
0 0602

0.0720
0 0329

0.1460
0 0525

0.0540
0 0499

0.0500
0 0170

0.7500
00474

0.6940
0 0360

Appendix B. Data File Samples and Processing Software

B.1 Preprocessing of Correlation Product Data Files.

The preprocessing of the correlation product data was performed using 2 com-
mercial digital signal processing package called DADiSP Worksheet!™, by DSP De-
velopment Corvoration, One Kendall Square, Cambridge, MA 02139. The software
is a graphics-based worksheet with a multi-window environment. For this thesis, the
1,000 point data files were loaded into a DADISP Labbook called THESIS which
also contained the Worksheet called REDUCE2 shown below. The Command File
shown on the next page was used to automate the reduction task. The Command
File, loaded into WINDOW 1 of the Worksheet, controlled the input of the 1,000
poir t data files into the Worksheet and the output to drive A: of the reduced 50
point data files. A sample of a Direct Sequence correlation product before and after

processing is shown in I'igures B.1 and B.2.

DADiSP Worksheet algorithm implemented in a
worksheet called REDUCE2.

WINDOW 1 : <file read in here>

WINDOW 2 : Decimate(W1,2,1)

WINDOW 3 : Decimate(W1,2,2)

WINDOW 4 Avg(WQ,W3)

WINDOW 5 : Abs(W4) | fmax

WINDOW 6 : W4/getpt(W5,curpos(W5)) | fmax | nmove(-25)
WINDOW 7 : Extract(Wé,curpos(W6),50)

B-1

Sample of DADiSP Worksheet Command File.

@cntl_home
CORRI7.1 Q@cr Qcr writea("A:\corrdat2\fcorr97.dat",w7) Qcr
CORR98.1 Qcr Qcr writea("A:\corrdat2\fcorr98.dat",w7) Qcr
CORR99.1 @cr Qcr writea("A:\corrdat2\fcorr99.dat",w7) Qcr
writea("A:\corrdat2\fcorri00.dat",w7) Qcr

@f8
ef8
Qf8
Qf8
Qf8
Qf8
Qf8
Qf8
Qf8
Q8

Qf8
Q£f8
Qf8
ef8
Qf8
Q£f8
Qf8
Qf8
Qefs8
Qf8

CORR100.
CORR101.
CORR102.
CORR103.
CORR104.
CORR105.
CORR106.

(Same pattern repeated for each CORRXX.1 file)

CORR264.
CORR265.
CORR266.
CORR267 .
CORR268.
CORR269.
CORR270.
CORR271.
CORR272.
CORR273.

T T A s

1
1
1
1
1
1
1
i
1

1

Q@cr
Qcr
Qcxr
Qcr
Qcr
Qcr
Qcr

Qcxr
Qcr
Qcx
Qcr
Qcr
Qcr

- Qcr

Qcr
Qcr
Qcr

Qcr
Qcr
Qcr
Qcr
Qcr
Qcr
Qcr

Qcr
Qcr
Qcr
Qcr
Qcr
Qcr
Qcx
Qcr
Qcr
Qcx

Qesc Qesc Qesc y Qesc

writea("A:\corrdat2\fcorri01.
writea("A:\corrdat2\fcorri02.
writea("A:\corrdat2\fcorri03.
writea("A:\corrdat2\fcorr104.
writea("A:\corrdat2\fcorri0s.
writea("A:\corrdat2\fcorri06.

writea("A:\corrdat2\fcorr264.

writea("A:\corrdat2\fcorr265
writea("A:\corrdat2\fcorr266

writea("A:\corrdat2\fcorr269

writea("A:\corrdat2\fcorr271

Qesc Qesc

B-2

dat",w7)
dat",w7)
dat*,w7)
dat",w7)
dat",w7)
dat",w7)

dat",w7)

.dat",wT)
.dat",w7)
writea("A:\corrdat2\fcorr267.
writea("A:\corrdat2\fcorr268.

dat",w7)
dat",w7)

.dat",w7)
writea("A:\corrdat2\fcorr270.

dat",w7)

.dat",w7)
writea("A:\corrdat2\fcorr272.
writea("A:\corrdat2\fcorr273.

dat",w7)
dat",w7)

Qcr
Qcxr
Qcr
Qcr
Q@cr
Qcr

Qcr
Qcr
Qcr
Qcr
Qcr
Qcr
Qcr
Qcr
Qcr
Qcr

F
E:
2

E

B o — o <

! 1 1 | P 1 1 1 1

0 50 100 150 200 250 300 350 400 450 500
Time Units

Figure B.1. Direct Sequence Correlation Product CORR18 Before Processing

tnc'*-»—'0<

___l ! 1 1 | | 1 1 ! 1

0 5 10 15 20 25 30 35 40 45 50
Time Units

Figure B.2. Direct Sequence Correlation Product CORR18 After Processing

B-3

B.2 Construction of Datasets.

In this section, the details of the construction of the input data files required
by the ANN simulator software will be presented. The data construction program
is written in QuickBasic'™. First, the program prompts the user for the name of an
input file containing the sequence number, filename, and the class for each correlation
signature to be used in the data set. Next, the user must provide a name for the file
in which the output of this program will be written. This file will be used as the input
to the ANN simulator. Finally, the user must specify the number of elements in each
vector. This number must be 50 for all reduced correlation signatures used in this
thesis. A sample of an input file and the source code for the program BUILDIN.BAS

follows:

Sample input file for constucting a dataset.

"d:\data\corrdati\fcorr6.dat", 1

"d:\data\corrdat4\fcorr61l.dat", 2
"d:\data\corrdati\fcorr9.dat", 1

"d:\data\corrdat4\fcorr63.dat", 2
"d:\data\corrdati\fcorri2.dat", 1
"d:\data\corrdat4\fcorr65.dat", 2
"d:\data\corrdati\fcorri4.dat", 1
"d:\data\corrdat4\fcorr67.dat", 2

- - -

-

-

-

O ~N & G W N =

-

(Same pattern repeated for each file included in dataset)

194, “"d:\data\corrdat4\fcorr235.dat",
195, "d:\data\corrdati\fcorri96.dat",
196, "d:\data\corrdat4\fcorr237.dat",
197, "d:\data\corrdati\fcorri98.dat",
198, "d:\data\corrdat4\fcorr239.dat",
199, "d:\data\corrdati\fcorr200.dat",
200, "d:\data\corrdat4\fcorr24i.dat",
201, "d:\data\corrdati\fcorr202.dat",
202, "d:\data\corrdat4\fcorr243.dat",

NN NN RN

B-4

Source Code for BUILDIN

'Program: BUILDIN.BAS

’Description: This routine reads a ASCII data file called
‘names$ consisting of multiple lines of a sequence number,

’a filename, and a class number. The filenames contain 50
'element correlation product vectors in a column. Each vector
'file is read and then written to a data file named by the
'user. The format for the super file is :

! element(0), element(1), ..., element(48), element(49)
! Class #
’ element(0), element(1), ..., element(48), element(49)
! Class #
? element(0), element(1l), ..., element(48), element(49)
! Class #

! EOF

"This file will be used as an input file for the ANN simulator
’software written by Dan Zahirniak.

INPUT "What is the file containing the name & class data"; names$
CLS

INPUT "What shall I name the ANN data file"; data$

CLS

INPUT "How many elements per vector"; inelements,

CLS

DIM vector!(inelements)

PRINT "Name file - "; names$
PRINT "ANN data file - "; data$
PRINT

PRINT "File being processed - ";
OPEN super$ FOR OUTPUT AS i#1
OPEN names$ FOR INPUT AS #2
DO UNTIL EOF(2)
INPUT #2, numbexr’, file$, class,
LOCATE 4, 26
PRINT file$
OPEN file$ FOR INPUT AS #3

B-5

FOR i = 0 TO (inelements’ - 1)
INPUT #3, vector!(i)
NEXT i
CLOSE #3
FOR i = 0 TO (inelementsy, - 1)
PRINT #1, vector!(i); " “;
NEXT i
PRINT #1,
PRINT #1, classY
LOOP
CLOSE
END

B-6

B.8 ANN Simulator Mémz and Oulpul Files.

In this section, samples of the menu used to select the parameters for each
network and samples of actual output files of the networks will be shown. The menu
used to sel-up the networks is contained in a larger file called NETMENU.C. The
output files generated by the ANN simulator software will be used to construct the

tables containing the results of the various runs.

The Menu for the ANN simulator is shown below. This is the menu used to

run the CE back-propagation network with a randomization seed of 3.

[okkkksokkoroskkdokskkok sk TEST STUFF sk skakokskokskskokokokkskskokokesk sk ok ok ok ok sk ok sk spoeokok ko /

static char train_file[] = 'class4.in";
static char test_file[] = 'class4.in";
static char output_file[] - "Extra_info.out;

static char selection_file[] = "CE4S8.SEL";
static char MSE_file[] = "MSE_data.out";
static char CFM_file[] = "CFM_data.out";
static char CE_file[] = "CE4S8.0UT";

normalize_the_data = 0; /¥ 1 = yes %/
find_the_distance = 0; /* 1 = yes %/
dimension = 50;

train_set = 204; /* Randomization Rule %/
test_set = 200; /* 1 - load separate files #*/
classes = 4; /% 2 - load from single file */
randomization_rule = 3; /* 3 - load by class x/

training_patterns_in_class[1] = 51;
training_patterns_in_class{2] = 51;
training_patterns_in_class[3] = 51;
training_patterns_in_classi4] = 51;
training_patterns_in_class[5] = 0;
training_patterns_in_class[6] = 0
training_patterns_in_class[7] = 0;
training_patterns_in_class[8] = 0

B-7

training_patterns_in_class[9] = 0;
training_patterns_in_class[10] = 0;

wght_seed= 0; sigma_seed= 0; data_seed= 8; record_seed= 1;
network_type = 1; number_of_layers = 3;
nodes_in_layer[0]=dimension;

nodes_in_layer[1]=24;

nodes_in_layer[2]=12;

nodes_in_layer[3]=4;

training_rule[0]=0;

training_rule[1]=7;

/*1-nodes at data points 2-center class average 3- K-meant */
/*sig-thres, out-thres avg-thresh sigthresh sig rule 3or4*/

/*4-kohonen 5-MSE backprop 6-CFM backprop T7-CE backprop */
/* nodes_x MSE stuff CFM stuff CE stuff */

training_rule[2] = ©

/*1-matrix invert 2-MSE backprop 3-CFM backprop 4-CE backprop*/
/*5-Parzen window MSE stuff CFM stuff CE stuff*/

training_rule(3] = 0;

/*1-MSE backprop 2-CFM backprop 3-CE backprp 4-Parzen window */

/* MSE stuff CFM stuff CE stuff */
sigma_threshold = 4; kohonen_iterations = 20000;
output_threshold = 1; nodes_x = 7;

average_threshold = 1;

MSE_iterations =30000; CFM_alpha = 1.0; CE_epsilon = .05;
MSE_error_delta = .1; CFM_beta = 4.0; CE_iterations=50000;
MSE_momentum = .1; CFM_eta = .14; CE_momentum = .05;
MSE_eta = .3; CFM_zeta = 0; CE_eta = 1.5;
MSE_successes = 100; CFM_successes = 100; CE_successes =10000;

CFM_iterations = 50000;

B-8

CFM_momentum = .1;
CFM_delta = 1.0;

transfer_function[0] = 0; /* 1- sigmoidal */
transfer_function[1] = {1; /% 2 -rbf */
transfer_function[2] = 1; /* 3- linear */
transfer_function[3] = 1;
gigma_rule = 1; /* Sigma rules 1- scale by constant */
interference_threshold = .4;
sigma_factor = .1; /* 2 - half nearest neighbor */
sigma_constant = 1.0; /* 3 - constant */
p.neighbors = 7; /* 4 - p neighbor average */

/**’B**/

B-9

)

The oulput hles for thz network selected by the menu shown on the previous
pages will be showa. A. specified in the ficst {ew lines of the menu, the output files
shown will be called CE4S8.SEL and CE4S8.0UT. The .SEL file contains the infor-
mation on the network set-up as well as output results such as classification accuracy
and vectors misclassified. The .;EL filcs will be used to construct the probability
matrix tables found in APPENDIX A. The classification accuracy percentages and

the misclassified vectors are based on the "good” classification metric. The .OUT

AVNE T A

file, generated for back-propagation networks only, contain the training and test
history of tie networks based on the "right” classification metric. The .QUT files

will be used to construct the back-propagation training performance plots found in

Chapter 4.

Sample .SEL file from ANN software simulator

CE458.SEL

Training file = class4.in Test file = class4.in
with 204 +training vectors and 200 test vectors
dimension = 50 classes = 4 :

load by class

- training patterns in class 1 =51

training patterns in class 2 = 51
training patterns in class 3 = 51
training patterns in class 4 = 51

veight seed = 0 sigma seed = 0 data seed = 8 record seed = 1

starting network topology

network type = feedforward with number of layers = 3
nodes in layer 0 = 50

nodes in layer 1 = 24
nodes in layer 2 = 12
nodes in layer 3 = 4

layer 1 transfer function = sigmoid

B-10

layer 2 transfer function = sigmoid
layer 3 transfer function = sigmoid

CE layer 1 and all others
eplison = 0.050000 iterations
eta = 1.500000 errors = 15000

Final topology

network type = feedforward with number of layers

nodes in layer 0 = 50
nodes in layer 1 = 24
nodes in layer 2 = 12
nodes in layer 3 = 4

training data

total errors = 1

per cent correct = 99.509804
record 43 misclassified as 1
recoxrds in class 1 = 51

recoxrds in class 2 = 51
records in class 3 = 51
records in class 4 = 51

test data
total errors = 56
per cent correct = 72.000000
recoxrd 232 misclassified as 2
record 72 misclassified as 4
record 209 misclassified as 1
record 88 misclassified as 4
record 47 misclassified as 1
record 276 misclassified as 4
record 4 misclassified as 4
record 78 misclassified as 4
record 395 misclassified as 1
record 45 misclassified as 4
record 55 misclassified as 1
record 187 misclassified as i
record 137 misclassified as 4
record i2i misclassified as 4
record 0 misclassified as 2
record 271 misclassified as 2
record 212 misclassified as 4

50000 momentum = 0.050000

B-11

record
record
record
record
record
record
record
record
record
record
record
record
record
record
record
record
record
record
record
recoxrd
record
record
record
record
record
record
record
record
record
record
record
record
record
record
record
record
record
record
record

255 misclassified as 1
53 misclassified as 1
161 misclassified as 1
264 misclassified as 2
171 misclassified as 3
70 misclassified as 4
92 misclassified as 2
285 misclassified as 4
259 misclassified as 3
146 misclassified as 2
322 misclassified as 2
64 misclassified as 2
125 misclassified as 1
208 misclassified as 2
48 misclassified as 4
197 misclassified as
103 misclassified as
370 misclassified as
369 misclassified as
119 misclassified as
275 misclassified as
38 misclassified as 2
313 misclassified as 3
374 misclassified as 2
378 misclassified as 1
318 misclassified as 2
14 misclassified as 4
101 misclassified as 1
80 misclassified as 2
247 misclassified as 1
332 misclassified as 2
143 misclassified as 1
142 misclassified as 2
82 misclassified as 1
280 misclassified as 4
118 misclassified as 1
66 misclassified as 1
36 misclassified as 2
296 misclassified as 4

O P R e

records in class 1 = 50

records in class 2
records in class 3

50
50

B-12

T DR

records in class 4 = 50
total per cent correct = 85.891090

Sample .0UT history output file

CE4S8.

iteration =

iteration
iteration

iteration =

iteration
iteration
iteration
iteration
iteration
iteration

ouT

iteration =
iteration =

iteration
iteration

iteration =

iteration

iteration =
iteration =

iteration

iteration -
iteration =

iteration
iteration

iteration =

iteration

iteration =

iteration =

iteration =

iteration =
iteration =
iteration =

iteration

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000
12000
13000
14000
15000
16000
17000

training correct

training correct =
training correct =

training correct
training correct
training correct
training correct
training correct
training correct
training correct
training correct

training correct =

training correct
training correct
training correct

training correct =
training correct =
18000 training correct =
19000
20000
21000
22000
23000
24000
25000
26000
27000
28000

training correct
training correct
training correct
training correct
training correct
training correct
training correct

training correct =
training correct =
training correct =

29000 training correct
30000 training correct

31000 training correct =

32000 training correct

produced by ANN simulator

0.200000 +test
0.000000 test
2.450980 test
12.254902 test
15.196078 test
15.196078 test
17.647058 test
22.549019 test
29.411764 test

40.196079
37.745098
49.509804
53.921570
57.3529490
53.431374
62.745098
38.725491
58.333332
72.058823
'68.627449
61.764706
77.450981

= 75.490196

82.352943
80.392159
84,313728
82.843140
83.333336
88.235291
77.450981
83.823532
85.784317

B-13

test
test
test
test
test
test
test
test
test
test
test
test
test
test
test
test
test
test
test
test
test
test
test

correct =
correct =
correct =

correct
correct
correct
correct
correct
correct

correct =
coxrrect =
correct =
correct =
correct =
correct =
correct =
correct =
correct =
correct =
correct =
correct =
correct =

correct

correct =
correct =
correct =

correct

correct =
correct =
correct =
correct =

correct

TN S R PRI

iteration =
iteration =
iteration =
iteration =
iteration =
iteration =
iteration =
iteration =
iteration =
iteration =
iteration =
iteration =
iteration =
iteration =
iteration =

iteration

iteration =

iteration

33000
34000
35000
36000
37000
38000
39000
40000
41000
42000
43000
44000
45000
46000
47000
48000
49000
50000

training correct =
training correct =

training correct

training correct =
training correct =
training correct =

training correct

training correct =
training correct =
training correct =
training correct =
training correct =
training correct =
training correct =
training correct =
training correct =
training correct =
training correct =

B-14

81

89

.372551
84.
86.
85.
75.
84.
86.
84.
87.
88.
89.
88.

8039256
274513
784317
280392
313728
764709
803925
254906
725487
705879
725487

.215683
90.
86.
89.
88.
89.

196075
274513
705879
725487
705879

test
test
test
test
test
test
test
test
test
test
test
test
test
test
test
test
test
test

correct
correct
correct
correct
correct
correct
correct

correct =

correct
correct

correct =
correct =

correct
correct
correct

correct =
correct =
correct =

a7.

49

56

55
56

57

00

.00
52.
48.
52.
55.
54.
55.
54.

00
50
00
50
50
00
50

.00
57.
54.
55.

00
50
00

.50
.50
54.

00

.50
59.

50

B.4 Processing of ANN Output.

In this section, the QuickBasic'™ programs used to process the information
contained in the selection file generated by the ANN simulator will be presented.
Both programs use the records misclassified to produce probability matrix tables
located in Appendix A. PTAB2.BAS is used to produce the matrices for two class
runs and PTAB4.BAS is used to produce the matrices for the four class run. The
selection file as shown in Section B.3 of this appendix is edited to produce files to
be used by the programs. The program requires the user to provide the name of
a file containing a list of filenames. The files specified by the list contain records

misclassified information taken from the selection fiie.

Sample input file for PTAB2.BAS containing the 8
records misclassified for a particular network

neti.dat

107
200
133
199

23

77
111
116

"Program: PTAB2.BAS

’This routine reads the data file containing test vectors
’misclassified yielded by each net for the two class runs. It
’then calculates the P matrix for that met. Multiplying the
’values of the P matrix by 100 yields the actual observed
'percent correct (or wrong) performance of the net. The
‘routine writes this info to a file in rows for each

'net data file in the name$ file. If the user specifies

B-15

'LOTUS format, the result is a table ready for import into
"LOTUS for computing the average of each column
»(P(1/1), P(2/1), P(1/2), P(2/2), and P(good))

OPTION BASE 1
REM $DYNAMIC
LOCATE 23, 2
INPUT "What source file for the data file names"; name$
CLS
LOCATE 23, 2
INPUT "Filename for probability matrix table"; matrix$
CLS
LOCATE 23, 2
INPUT "Filename for out of class vector log"; verror$
CLS
DO
LOCATE 23, 2
INPUT "Do you want Lotus type file"; a$
LOOP UNTIL a$ = "y" OR a$ = "n"
CLS
LOCATE 12, 31
PRINT "WORKING "
DIM cerror’(2), vectornum’%(50), classcount¥(2)
DIM prob!(5)
OPEN matrix$ FOR OUTPUT AS #1
OPEN name$ FOR INPUT AS #2
OPEN verror$ FOR OUTPUT AS #3
IF a$ = "n" THEN

PRINT #1, "Net ID P(1l1) P(211) P(112) P(212) P(good)"

PRINT #1, Mmoo o e oo o o o o e e

END IF
PRINT #3, "Net ID Out - of - Class vectors"

R T e ————

DO UNTIL EOF(2)

FOR i =1T0 2
cerroxr(i) = 0
classcountf(i) = 0

NEXT i

wrong} = 0

INPUT #2, net$

B-16

OPEN net$ FOR INPUT AS #4
DO UNTIL EOF(4)
INPUT #4, missed),
missed), = missed), + 103
IF missed) MOD 2 = 1 THEN
classcount’ (1) = classcount,(1) + 1
cerror/,(1) = cerrori(1) + 1
wrong), = wrongj + 1
vectornum),(wrong¥) = missed,
ELSE cerror(2) = cerror(2) + 1
wrongl, = wrongl + 1
vectornum),(wrong) = missed),
END IF
LOOP
CLOSE #4
classcounti (1) = 50
classcount’(2) = 50
count) = classcount(1) + classcount’(2)
prob!(2) = cerror}(1) / classcount’(1)
prob!(3) = cerror’(2) / classcount’(2)
prob! (1) = 1 - prob!(2)
prob!(4) = 1 - prob!(3)
prob!(6) = (classcount/(1) / count)) * prob!(1)
+ (classcount(2) / count’) * prob!(4)
PRINT #3, LEFT$(net$, LEN(net$) - 4);
IF LEN(net$) - 4 = 4 THEN PRINT #3, SPC(4);
IF LEN(net$) - 4 = 5 THEN PRINT #3, SPC(3);
IF LEN(net$) - 4 = 6 THEN PRINT #3, SPC(2);
FOR i = 1 TO wrong),
PRINT #3, vectornumf(i);
NEXT i
PRINT #3,
IF a$ = "n" THEN
PRINT #1i, LEFT$(net$, LEN(net$) - 4),
FORi=1T06
PRINT #1, prob!(i); SPC(4);
NEXT i
PRINT #1,
ELSEIF a$ = "y" THEN
PRINT #1, CHR$(34); LEFT$(net$, LEN(net$) - 4); CHR$(34);
FORi=1T06
PRINT #1, ","; prob!(i);

B-17

NEXT i

PRINT #1,
END IF
LOOP
CLS
' CLOSE
END

Sample input file for PTAB4.BAS containing the 8
records misclassified and the incorrect classifications
for a particular network

netl.dat

107
200
133
199

23

77
111
116

D W WD

'Program: PTAB4.BAS

’This routine reads the data file containing the records
'misclassified and the incorrect classifications yielded by a
’net on the test set vectors for the four class runs.

’It then calculates the P matrix

'for that net. Multiplying the values of the P matrix by 100
’yields the actual observed percent correct (or wrong)
‘performance of the net. The routine writes this

’info to a file in rows for each net data file in the name$
‘file. 1If the user specifies LOTUS format, the result is a
'table ready for import into LOTUS for computing the average
’of each column

B-18

OPTION BASE 1
REM $DYNAMIC
LOCATE 23, 2
INPUT "What source file for the data file names"; name$
CLS
LOCATE 23, 2
INPUT "Filename for correct probability matrix table"; matrix$
CLS
LOCATE 23, 2
INPUT "Filename for misclassified prob. matrix table"; matrixa$
CLS
LOCATE 23, 2
INPUT "Filename for out of class vector log"; verror$
CLS
DO
LOCATE 23, 2
INPUT "Do you want Lotus type file"; A$
LOOP UNTIL A$ = "y" OR A$ = "n"
CLS
LOCATE 12, 31
PRINT "WORKING "
DIM cerror’(17), vectornum)(400), classcount(4)
DIM prob! (17)
OPEN matrix$ FOR OUTPUT AS #i
OPEN name$ FOR INPUT AS #2
OPEN verror$ FOR OUTPUT AS #3
OPEN matrixa$ FOR OUTPUT AS #5
PRINT #3, '"Net ID Out - of - Class vectors"
PRINT #3, M=--mommmm oo e e e e e "
DO UNTIL EOF(2)
FOR i =1 TO 17
cerror,(i) = 0
NEXT i
wrong}, = 0
INPUT #2, net$
OPEN net$ FOR INPUT AS #4
DO UNTIL EOF(4)
INPUT #4, missedy, called,
missed) = missed) + 1
IF missed) MOD 4 = 1 THEN
IF called) = 2 THEN

B-19

cerror}(6) = cerror(6) + 1
ELSE
IF called) = 3 THEN
cerrori(7) = cerroxr(7) + 1
ELSE
cerror/i(8) = cerroxrfi(8) + 1
END IF
END IF
ELSE
IF missed), MOD 4 = 2 THEN
IF called) = 1 THEN
cerror’i(9) = cerroxrf(9) + 1
ELSE
IF called), = 3 THEN
cerror’,(10) = cerror(10) + 1
ELSE
cerror’(11) = cerror¥(11) + 1
END IF
END IF
ELSE
IF missed) MOD 4 = 3 THEN
IF called) = 1 THEN
cerror/(12) = cerrorl(12) + 1
ELSE
IF called), = 2 THEN
cerror’4(13) = cerror),(13) + 1
ELSE
cerror’(14) = cerror¥(14) + 1
END IF
END IF
ELSE
IF called’ = 1 THEN
cerror/4(15) = cerrorl(15) + 1
ELSE
IF called’ = 2 THEN
cerror/(16) = cerrori(16) + 1
ELSE
cerrox’,(17) = cerror}(17) + 1
END IF
END IF
END IF
END IF

B-20

END IF
wrongl, = wrongl + 1
vectornum),(wrong)) = missed),
LOOP
CLOSE #4
classcount (1) = 50
classcount’(2) = 50
classcount(3) = 50
classcount’(4) = 50
county, = classcount’(1) + classcount!(2) + classcount’(3)
+ classcount’(4)
prob!(2) = cerror’,(6) / classcount’(1)
prob!(3) = cerror’i(7) / classcount’(1)
prob!(4) = cerror’i(8) / classcount’(1)
prob! (1) = 1 - (prob!(6) + prob!(7) + prob!(8))
prob!(5) = cerror(9) / classcount’(2)
prob!(7) = cerror(10) / classcount’(2)
prob!(8) = cerror(11) / classcount?(2)
prob!(6) = 1 - (prob!(9) + prob!(10) + prob!(11))
prob!(9) = cerror(12) / classcount(3)
prob! (10) = cerror)(13) / classcount’(3)
prob! (12) = cerroxr’(14) / classcount’(3)
prob!(11) = 1 - (prob!(12) + prob!(13) + prob!(i4))
prob!(13) = cerror)(15) / classcount’(4)
prob!(14) = cerror),(16) / classcount’(4)
prob!(15) = cerror’,(17) / classcount’(4)
prob!(16) = 1 - (prob!(15) + prob!(16) + prob!(17))

A = (classcount,(1) / count%) * prob!(1)
B = (classcount%(2) / count’) * prob!(2)
C = (classcount,(3) / count)) * prob!(3)
D = (classcount,(4) / count)) * prob!(4)

prob!(17) = A + B + C + D
PRINT #3, LEFT$(net$, LEN(net$) - 4);
IF LEN(net$) - 4 = 4 THEN PRINT #3, SPC(4);
IF LEN(net$) - 4 5 THEN PRINT #3, SPC(3);
IF LEN(net$) - 4 6 THEN PRINT #3, SPC(2);
FOR i = 1 TO wrong)

PRINT #3, vectornum/,(i);
NEXT 1
PRINT #3,
IF A$ = "n" THEN

PRINT #1, LEFT$(net$, LEN(net$) - 4),

n

B-21

FOR1i=1T0S8
PRINT #1, prob!(i); SPC(4);
NEXT i
PRINT #1,
ELSEIF A$ = "y" THEN
PRINT #1, CHR$(34); LEFT$(net$, LEN(net$) - 4); CHR$(34);
FOR i =1 TO 8
PRINT #1, ","; prob!(i);
NEXT i
PRINT #1,
END IF
IF A$ = "n" THEN
PRINT #5, LEFT$(net$, LEN(net$) - 4),
FOR i = 9 TO 17
PRINT #5, prob!(i); SPC(1);
NEXT i
PRINT #5,
ELSEIF A$ = "y'" THEN
PRINT #5, CHR$(34); LEFT$(net$, LEN(net$) - 4); CHR$(34);
FOR i =9 TO 17
PRINT #5, ","; probi(i);
NEXT i
PRINT #5,
END IF
LOOP
CLS
CLOSE
END

B-22

bo

10.

11.

12.

Bibliography

. DeBerry, John W, "Classification of Acousto-Optic Correlation Signatures

of Spread Spectrum Signals Using Artificial Neural Networks,” MS thesis,
ATFIT/GE/ENG/89D-10. School of Engineering, Air Force Institute of Tech-
nology (AU), Wright-Patterson AFB OH, December 1989 (AD-A215045).

Gorman, R. P. and T. J. Sejnowski. "Learned Classification of Sonar Targets
Using a Massively Parallel Network,” IEEE Tranactions on Acoustics, Speech,
and Signal Processing, vol. §6: 11351140 (July 1988).

. Lippman, R. P. ”An Introduction to Computing with Neural Nets,” IEEE ASSP

Magazine: 4-22 (April 1987).

Lippman, R. P. "Pattern Classification Using Neural Networks,” IEEE Com-
munications Magazine: 47-63 (November 1989).

. Moody, John and Christian Darken. ”Learning with Localized Receptive

Fields,” Proceedings of the 1988 Connectionist Models Summer School: 133~
143, New Haven CT: Yale Computer Science (1988).

. Norman, D. M. Spread Spectrum Communications handout distributed in

EENG 667, Coding and Information Theory. School of Engineering, Air Force
Institute of Technology (AU), Wright Patterson AFB OH, March 1990.

Nowlan, Steven J. Maz Likelihood Competition in RBF Networks. Technical Re-
port CRG-TR-90-2, Toronto Canada: Departmeut of Computer Science, Uni-
versity of Toronto (February 1990).

. Pickholtz, Raymond L. et al. *Theory of Spread-Spectrum Communication -

A Tutorial,” IEEE Transactions on Communications, vol. 80: 855-884 (May
1982).

. Renals, 5. and Richard Rohwer. "Phoneme Classification Experiments Using

Radial Basis Functions,” Proceedings of the International Joint Conference on
Neural Networks: 461-467 (1989).

Rogers,Steven K. et al. ”An Introduction to Biological and Artificial Neural
Networks.” wpafb: afit, 1990.

Rummelhart, David E. et al. "Parallel Distributed Processing.” Cambridge MA:
The MIT Press, 1986.

Tamura, 5. and A. Waibel. "Noise Reduction Using Connectionist Models,”
Proceedings of the International Conference on Acoustics, Speech, and Signal
Processing, paper 512.7: 553-556 (1988).

BIB-1

13.

14,

15.

16.

17.

Tarr, G. L. "Dynamic Analysis of Feedforward Neural Networks Using Simu-
lated and Measured Data,” MS thesis, AFIT/GE/ENG/88D-54. School of En-
gineering, Air Force Institute of Technology (AU), Wright Patterson AFB O,
December 1988 (AD-A202573).

Troxel, S. . et al. ”The Use of Neural Networks in PSRI Target Recognition,”
IEEE International Conference on Neural Networks: 593-600 (1988).

Waibel, Alexander H. and John B. Hampshire. ”A Novel Objective Function for
Improved Phoneme Iecognition,” IEEE Transactions on Neural Networks, vol.
1: 216-227 (June 1990}.

Waibel, Alexander H. et al. "Phoneme Recognition Using Time-Delay Neural
Networks,” IEEE Transactions on Acoustics, Speech, Signal Processing, vol.
ASSP-87 328-339 (March +389).

Zahirniak, Dan. ”Characteri..ation of Radar Signals Using Neural Networks,”
MS thesis, AFIT/GE/ENG/9GD-69. School of Engineering, Air Force Institute
of Technology (AU), Wright-Patterson AFB OH, December 1990.

BIB-2

Colectian o itormaten, (fuuditng $uTTest ond LOT SR 1hiy Burdln 1o 4 E BN JION 18 I0GU LAY SE VLS, LITCL Fate 2}
Dt Mo, 5unte 1203, Ahrgton, A 22702-3302 3rd o the DL ¢t 1M Gemrnt nd dudatt £ 1Dera 0t Reduct nfrepont @03 U1 Washungton, LC 20503

Form Approved
REPORT DOCUMENTATION PAGE A
Public ropartiag Lurdon 108 thiy (CHECUEN 0F (ATOIPS10n 55 SUMIAT @ T 1 aTa 10 1 DLyt 071 PN (MLEING RS LME 107 10 F B INSTruciURY 0 Indumd L2064 dHaA souIees,

Gatherng 383 MARTANAG The dAta A-0ded, 10 COMP LUNG INBILLRAIr I Lulle toa ut ut it e @ oo mmemy wx{; nmr*vq 1015 DUtGen M UMake Lt ;\ny v;ﬂi‘l‘ k:i—:ﬂ"‘,ﬁ Lh:
RO MATION LR 3a0ns 443 Rebodly, o ls setieise

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYFE AND DATES COVERED
December 1990 Master's Thesis
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

CLASSIFICATION OF CORRELATION SIGNATURES OF SPREAD SPEC-
TRUM SIGNALS USING NEURAL NETWORKS

6. AUTHOR(S)
Richard A. Chapman, GS-12

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERF. {MING ORGANIZATION

REPORYT NUMBER
. . ¢)
Air Force Institute of Technology, WPAFB OH 45433-6583 AFIT/GE/ENG/90D-11

9. SPONSORING; MONITORING.AGENCY NAME(S) AND ADORESS(ES) 10. SPONSORING ; MONITORING
e AGENCY REPORT NUMBER
US“Army Harry Diamond Lal

SLC-HD-ST-OP
2800 Powder Mill Road
Adelphi MD,20783,

'11..SUPPLEMENTARY NOTES o

L

RN T

gl i dt

o It st Lo L

T2a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION-CODE
Approved for public release; distribution unlimited

pETpTRppII]

13. ABSTRACT (Maximum 200 words) B B

The major goals of this research were to determine if Artificial Neural Networks-(ANNS). could-be-trained-1o-classify
the correlation signatures of two classes and four classes of spread spectrum signals. Also, the:possibility of training an
ANN to classify features of the signatures other than signal class was investigated. Radial Basis:Function-(RBF)-and
Back-Propagation Networks were used for the classification problems. Correlation signatures of four-types or-classes were
obtained from United States Army Harry Diamond Laboratories. The four types are-as follows: -direct-sequence (DS),
linearly-stepped frequency hopped (LSFH), randomly-driven frequency hopped (RDFH), and a hybrid of-direct sequence
and randomly-driven frequency hopped (HYB). These signatures were preprocessed-and separated:into-various.data scts
for presentation to the ANNs. RBF and Back-Propagation Networks trained directly on two classes (DS and LSFH)-and
four classes (DS, LSFH, RDFH, and HYB) . correlation signatures. Classification accuracies-ranged from-79% 10 92%
for the two class problem and from 70% to 76% for the four class problem. The RBF Networks-consistently produced
accuracies from 5% to 10% higher than accuracies produced by Back-Propagation Networks. Also, the RBF Networks
required significantly less training time for all cases. In attempts to classify the signatures by parameters-other-than signal
type, the results were inconclusive regarding the usefulness of ANNs,

14. SUBJECT TERMS 75. NUMBER OF PAGES
Neural Networks, Spread-Spectrum, Signal Classification, Pattern Recognition, Backward 133 —
. . . . 16. PRICE CODE
Error Propagation, Radial Basis Function
17. SECURITY CLASSIFICATION | *8. SECURITY CLASSIFICATION]19. SECURITY CLASHFICATION [.20. LIMITATION OF ABSTRACT
OF REPCRT OF THIS PAGE OF ABSTRACT
Unclassified Unclassificd Unclassified ‘UL
SN 7540 01-280-5500 " Standard Form 298 (Rev 2-89)

Prosented by ANSE St 2358
298-102

GENERAL INSTRUCTIONS FOR COMP.ETING SF 298

The ‘Report Documentation Page (RDP) is used «n announcing and cataloging reports

1s important

that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling 1n each block of the form follow. it is important to stay within the-lines to meet

optical scanning requirements.

1 Prepuream cooperationwith..., Trans. of..

Block 1. Agency Use Only (Leave blank)

Block 2. Report Date. Full publicationdate
including day, month, and year, it available(e g 1
Jan 88). Must cite atleast the year.

Block 3. Type of Report and Dates Covered
State whether report is interim, final, etc. If
applicable, enter inclusive report dates (e.g. 10
Jun 87 -30 Jun 88).

Block 4. Title and Subtitle. A title is taken from
the part of the report that provides the most
meaningful and complete information. When a
report is prepared in more than one volume,
repeatthe primary title, add volume number, and
include subtitie for the specific volume. Gn
classified documenis enter the titie classification
in parentheses.

Block 5. Funding Numbers. To include-contract
and grant numbers; may include program
element number(s), project number(s), task
number(s), and work uni: wumber(s). Use-the
following labels;

C - Contract PR - Project
G - Grant TA - Task
PE - Program WU - Work Unit

Element Accession No,

Block 6. Author(s). Name(s) of person(s)
responsible for writing the report, performing
the research, or credited with the-content of the
report. If editor or compiler, this should follow
the name(s).

Block 7. Performing Organization Name(s) and
Address{es). Self-explanatory.

Block 8. Performing Organization Zeport
Number, Enter the unique alphanumeric report
number(s) assigned by the organization
performing the report.

Block 8, ‘Sponsoring/Monitoring Agency Name(s)

and Address(es). Self-explanatory.

Block 10. Sponscring/Monitoring Agency
Report Number. (if known)

Block 1%, Supplementary Notes. Enter
information notincluded elsawhere suchi as.

. Tobe

published in.... When a report m revised, mdude
astatement whether the new reportsupersedes
“or supplements the older report.

Block 12a. Distribution/Availability Statement
Denotes public availability or limitations. Cite any
availability to the public. Enter additional
limitations or special markings in all capitals (e.g.
NOFORN, REL, ITAR).

DOD - See DoDD 5230.24, "Distribution
Statements on Technical
Documents.”

DOE - 5eeauthoriu...

NASA - See Handbook NHB 2200.2,

NTIS - Leaveblank.

Block 12b. Distribution Code.

DOD - Leaveblank.

DOE - Enter DOE distribution-categories
from the Standard Distribution-for
Unclassified Scientific.and Technical
Reports.

NASA - Leave blank.

NTIS - Leaveblank.

Block 13. Abstract. Include a brief{(Maximum
200 words) factual summary of the-most
significant information contained:in:the report.

Block 14. Subject Terms. Keywords or phrases
identifying major subjects in the report.

Block 15. Number of Pages. Enterthe total
number of pages.

Block 16. Price Code. Enter appropriate-price
code (NTIS only)

Blocks 17.-19. Security Classifications. Self-
explanatory. Enter U.S. Security Classificationin
accordance with U.S, Security Regulations (i.e.,
UNCLASSIFlED) If form contains classified

information, stomp <lassificotion onthe top and
bottom of the page.

Block 20. Limitation of Abstract. Thisblock must
be completed to assign a limitation to the
abstract, Enter either UL {(unlimited) or SAR-(same
as report). Anentry in this block isnecessary if
the abstract is to be limited. (fblank, the abstract
is assumed to be unlimited.

Standard Form 298 8ack (Rev. 2:89)

